

Structured narrative review on lung cancer screening: current evidence, clinical practice implications and implementation insights from a multidisciplinary task force and patient representatives

Georgia Hardavella¹, Kyriaki Tavernaraki², Dimitrios Lioumpas³, Efimia Boutsikou⁴, Eleni Karetsi⁵, Elli Keramida ¹, Alexandros Letsos ⁶, Konstantinos Livanios⁷, Ira Michailidou⁸, Stylianos Benakis ⁶, Aggeliki Pandi⁹, Leonidas Papastavrou¹⁰, Konstantinos Stefanidis¹¹, Eleftherios Zervas ¹², Theoni Agapitou¹², Martha Andritsou¹³, Stavros Anevlavis¹⁴, Gerasimos Apollonatos¹⁵, Kathi Apostolidou¹⁶, Katerina Bakiri¹⁷, Zafeiria Barmparessou¹³, Elena Bellou¹, Danai Bisirtzoglou⁸, Loukas Dagdilelis¹⁸, Eleni Fili ¹⁹, Christophoros Foroulis²⁰, Stylianos Gaitanakis²¹, Christina Gkriniouk¹, George Kapetanakis¹⁶, Konstantinos Karagiannis²², Ioannis Karampinis²³, Eleni Kokkotou ¹², Alexandra Kote²⁵, Athanasios Kostoulas²⁶, Sofia Lambaki²⁷, Dimitrios Magouliotis²⁸, Maria Mani²⁴, Gerasimos Metaxas²⁹, Aggeliki Miziou⁵, Katerina Mproupi²⁹, Styliani Mytilinaiou³⁰, Konstantinos Potaris²³, Konstantinos Samitas¹², Vasilios Skouras³¹, Dionysis Spyratos²⁷, Andreas Stathoulopoulos³, Myrsini Stasinopoulou³², Lamprini Stournara²⁴, Emmanouil Theodorakis²³, Sokratis Tsagaropoulos²⁰, Stylianos Vittorakis³³, Charalampos Zisis³⁴, Panagiotis Zois³⁵ and Ioannis Gkiozos²⁴

¹6th Department of Respiratory Medicine, "Sotiria" Athens' Chest Diseases Hospital, Athens, Greece. ¹Department of Computed Tomography and Interventional Radiology, "Sotiria" Athens' Chest Diseases Hospital, Athens, Greece. ³Department of Thoracic Surgery, General Hospital of Nikaia, Piraeus, Greece. ¹Department of Respiratory Medicine and Oncology, "Theageneio" Anti-Cancer Hospital of Thessaloniki, Thessaloniki, Greece. ¹Department of Respiratory Medicine, University General Hospital of Larisa, Mezourlo, Greece. ¹Department of Radiology, "Evaggelismos" General Hospital of Athens, Athens, Greece. ¹Private Clinic, Respiratory Primary Care, Pirgos, Greece. *Department of Respiratory Medicine, "Agia Eirini" District General Hospital of Corfu Island, Kontokali, Greece. ¹Department of Respiratory Medicine, "Agia Eirini" District General Hospital of Corfu Island, Kontokali, Greece. ¹Department of Thoracic Surgery, Athens' Medical Center, Athens, Greece. ¹¹Department of Radiology, "Metaxa" Anti-Cancer Hospital of Piraeus, Piraeus, Greece. ¹²Th Department of Respiratory Medicine, "Sotiria" Athens' Chest Diseases Hospital, Athens, Greece. ¹³Department of Respiratory Medicine, "Evaggelismos" General Hospital of Athens, Piraeus, Greece. ¹⁴Department of Respiratory Medicine, University General Hospital of Alexandroupoli, Alexandroupoli, Greece. ¹⁵Private Clinic, Respiratory Primary Care, Peristeri, Greece. ¹⁴Hellenic Cancer Federation, Athens, Greece. ¹¹¹St University Department of Respiratory Medicine, "Sotiria" Athens' Chest Diseases Hospital, Athens, Greece. ¹²Department of Radiology, "G. Papanikolaou" General Hospital of Thessaloniki, Hortiatis, Greece. ¹³Medical Library, "Sotiria" Athens' Chest Diseases Hospital, Athens, Greece. ²³Department of Thoracic Surgery, "Sotiria" Athens' Chest Diseases Hospital, Athens, Greece. ²³Department of Respiratory Medicine, Nikua, "Sotiria" Athens' Chest Diseases Hospital, Athens, Greece. ²³Department of Respiratory Medicine, "Sotiria" Athens' Chest Diseases Hospital, Athens, Greece.

Corresponding author: Georgia Hardavella (georgiahardavella@hotmail.com)

Shareable abstract (@ERSpublications)

Lung cancer screening implementation depends on national infrastructure, available resources and national guidance. Screening services and participants would benefit from a pan-European statement harmonising the differences among countries. https://bit.ly/4muf07o

Cite this article as: Hardavella G, Tavernaraki K, Lioumpas D, et al. Structured narrative review on lung cancer screening: current evidence, clinical practice implications and implementation insights from a multidisciplinary task force and patient representatives. *Eur Respir Rev* 2025; 34: 240249 [DOI: 10.1183/16000617.0249-2024].

Copyright ©The authors 2025

This version is distributed under the terms of the Creative Commons Attribution Non-Commercial Licence 4.0. For commercial reproduction rights and permissions contact permissions@ersnet.org

Received: 3 Nov 2024 Accepted: 26 July 2025

Abstract

Introduction Lung cancer screening (LCS) is an evolving field with variations in its implementation worldwide. National LCS programmes are limited and preliminary data from national implementation are scarce.

Aim An up-to-date overview of the available literature about 12 LCS-related topics that were identified as priorities by a multidisciplinary task force (TF) panel and patient representatives as well as synthesis of published evidence to inform clinical practice and health decision-making about LCS implementation. In specific areas where the scientific evidence is limited or mixed, the limitations are discussed and best practices based on available evidence are concluded.

Materials and methods A multidisciplinary TF expert panel collaborated with patient representatives, identified 12 areas of interest and incorporated patient priorities. A systematic literature search was conducted, followed by screening, review and synthesis of available evidence.

Results There is a lack of national LCS programmes in most countries worldwide. LCS benefits and potential risks are well established. Low-dose computed tomography (LDCT) combined with smoking cessation should be offered as part of a LCS strategy to ensure optimal clinical outcomes. Age and smoking status cut-offs as well as other inclusion criteria vary and should be based on national epidemiological data. Available LCS risk predictor models and biomarkers require further clinical validation prior to implementation across the entire spectrum of LCS candidates. LCS frequency remains controversial with biennial LDCT being supported by current evidence. Technical standards, quality assurance and LCS management protocols are essential in LCS implementation.

Conclusions LCS benefits override potential risks. There is slim evidence for specific cut-off values for inclusion criteria, the optimal duration of LCS programmes and the application of LCS biomarkers in clinical practice. Smoking cessation should be integrated within LCS programmes. Ongoing scientific activity in the area is expected to provide answers in the near future.

Introduction

Lung cancer (LC) is one of the most common cancers and the leading cause of cancer-related deaths worldwide [1, 2]. Despite significant progress made in oncological treatments, radiotherapy and surgical modalities, LC survival remains low, as most LC patients are diagnosed at an advanced stage of the disease when radical treatment is not an option [3, 4].

Increasing scientific evidence has reported that low-dose computed tomography (LDCT) LC screening (LCS) diagnoses LC at an early stage in up to 70% cases and decreases LC mortality by up to 25% [5, 6]. Although there is clear benefit stemming from LCS implementation, challenges and uncertainties remain regarding how to maximise its efficiency and cost-effectiveness and minimise its harms. Optimal identification of high-risk individuals who would benefit from LCS, the management of screen-detected findings and smoking cessation interventions are only a few of the factors affecting LCS implementation and impact its efficiency, cost-effectiveness and harm minimisation [7–9]. National LCS programmes are limited and relevant preliminary data from national implementation are scarce [2]. LCS is an evolving field and there are variations in practice worldwide with regards to its implementation. This manuscript aims to form an up-to-date overview of the current evidence in LCS. In specific areas where the scientific evidence is limited or mixed, the Hellenic Thoracic Society (HTS) Lung Cancer Group task force (TF) members discuss the limitations and conclude in best practices based on available evidence.

Methods

The multidisciplinary TF was initiated by the HTS Lung Cancer Group and includes members of the HTS, the Hellenic Radiological Society, the Hellenic Society of Thoracic and Cardiovascular Surgeons and patient representatives from the Hellenic Cancer Federation (ELLOK).

The multidisciplinary expert panel included 35 respiratory physicians, six radiologists and 11 thoracic surgeons with a special interest in thoracic oncology, as well as senior trainees (early career members <40 years old) in these specialties. The panel was supported by a librarian, a registered nurse and a public health professional. 35 TF members practiced only in the national health system, nine TF members practiced only in the private health system and 11 TF members practiced simultaneously in the national health system and the private health system and were also affiliated with the Universities of Athens, Thessaloniki and Alexandroupolis. Subsequently, the expert panel represented all types of healthcare services and its members represented various geographical regions. Virtual meetings were held with a patient focus group from the ELLOK (official representative body of 40 patient organisations in Greece) to identify areas of interest and patient priorities and ensure they were incorporated into this structured narrative review's scope and narrative questions. 12 areas of interest were identified and agreed by consensus and subsequently led to 12 narrative questions based on the healthcare professionals' and

patients' prioritisation. In addition to the 12 narrative questions, the TF panel specifically discussed the potential additional inclusion of further subjects in the form of separate narrative questions in this review, as follows: optimal LCS promotion, LCS recruitment and adherence strategies, LCS efficiency and cost-effectiveness, combined screening approaches of LC, and cardiovascular disease (CVD) and COPD ("big-3" diseases). The TF healthcare professionals agreed with the TF patient representatives' approach that the above should constitute a separate piece of work and therefore a consensus was reached not to include them in the current manuscript in the form of separate narrative questions as it would broaden its scope further.

The aim of this structured narrative review was to provide an up-to-date overview of the current evidence in LCS to inform best practices and guide health decision-making regarding its implementation. The scope of this structured narrative review was to identify 12 LCS related topics that were identified by the TF panel and patient representatives as priorities in clinical practice and LCS implementation. The topics included the following: current situation of LCS programmes worldwide, LCS benefits and risks, services to be included in LCS, inclusion criteria, optimal duration of LCS, optimal LCS biomarkers, optimal risk prediction models, management of LCS findings, technical standards, and quality assurance.

This review brings together available evidence on LCS implementation main issues. This may help decision-makers, health managers and multidisciplinary teams to design LCS programmes.

To the best of our knowledge, this is the only LCS review in the literature that has included priorities identified by healthcare professionals and patient representatives. It covers a more extensive timeframe of literature search (from January 2011 to March 2025) in comparison with other reviews and it presents synthesised data in narrative questions highly relevant and pertinent to patients' and healthcare professionals' priorities aiming to inform clinical practice and health decision-making about LCS implementation.

Our review presents some potential limitations. It is a structured narrative review and does not comment on the quality of evidence; rather, it syntheses published data with aim of informing clinical practice and health decision making in terms of LCS implementation.

PubMed and Cochrane databases were searched using a combination of appropriate MeSH (medical subject headings) keywords and headings, with search results from January 2011 to March 2025 and including publications in English, French and German. Additional searches were performed for documents from the ACR (American College of Radiology), ESTI (European Society of Thoracic Imaging), ESR (European Society of Radiology), NHS England and national health ministry websites worldwide, where the English versions of their websites were accessed. The full search strategy for each question, including search words and Boolean operators, is available in the appendix.

Case reports, narrative reviews, editorials, letters to the editor, commentaries, opinion reports, congress abstracts, study protocols and trials with fewer than 40 participants were excluded. In particular, the types of included studies (\geq 40 participants) covered a wide methodological range and included adaptive clinical trials, multicentre studies, microsimulation studies, clinical studies, clinical trials (phases I–IV), observational studies, comparative studies, randomised controlled clinical trials, controlled clinical trials, equivalence trials, evaluation studies, validation studies and observational studies. Prisma flowcharts for each question are available in appendix 1.

Each subgroup independently screened their allocated abstracts based on the search criteria and the relevant question. Queries or disagreements were virtually discussed with the TF chairs and subsequently all abstracts were screened at a second round by them.

The multidisciplinary member subgroups performed data extraction and prepared drafts summarising the relevant scientific literature for their respective questions, which were reviewed and revised by all members prior to submission to the TF chairs. The chairs collated the subgroup outputs into a single manuscript, which was approved by all members and therefore constitutes the TF overview.

Results and discussion

Question 1: what is the current situation with national LCS programmes worldwide?

There is lack of national LCS programmes in most countries worldwide; however, LCS has been accessible in some countries through pilot studies [5, 6, 10–13]. National LCS programmes present considerable variation in implementation, programme structure, eliqibility criteria and reimbursement.

A national LCS programme was first introduced in the USA in 2015 [14]. Guidelines for the eligibility criteria were recently updated by the US Preventive Services Task Force (USPSTF) and the Centers for Medicaid and Medicare Services by lowering the age range and pack-years (from 55–74 years old, smoking habit \geq 30 pack-years and years since quitting \leq 15 to 50–80 years old, smoking habit \geq 20 pack-years and years since quitting smoking no longer required). The main aim of these changes is expand eligibility and improve equity of screening at least, in part to address ethnic disparity [15].

Canada uses a simulation model to assess feasibility of implementing national LCS programmes in the future. Currently, there are two permanent LCS programmes in Canada for high-risk populations [16].

Brazil and Russia run implementation studies [17, 18], with the latter reported in Russian and therefore excluded due to our methodology.

In Europe, the Czech Republic launched a 5-year national LCS programme (2022–2026) [19], Slovakia has recently published guidelines for LCS implementation pending the official launch of a national programme [20], Croatia was the first European country to start a national LCS programme and issued relevant recommendations [21], and Poland recently also started a national LCS programme [22]. Switzerland has recently issued national LCS guidelines in anticipation of a future LCS programme [23] and a feasibility approach [24].

To overcome informational barriers and stigma, the UK presented LCS screening as a "lung health check", which has since been rolled out across the nationally [25], and a positive recommendation has been given for the introduction of a national LCS programme [26, 27].

There is no national LCS programme in the Netherlands; however, high-risk Dutch individuals were screened during the NELSON trial [5] and are now being screened by "4 In The Lung Run", a new European population screening study recruiting high-risk individuals from the Netherlands, Germany, UK, Spain, Italy and France [28].

Germany does not have a national LCS programme; however, the HANSE study, new holistic screening approach, is underway [29], which is anticipated to integrate several other factors in addition to the imaging evaluation of the nodules.

Italy has completed four LCS trials (DANTE, MILD, BioMILD and ITALUNG), reporting promising results regarding LC mortality benefits [13, 30–32]. There is no national LCS programme and an LCS position paper has been recently published by the Italian College of Thoracic Radiology [33].

There is no national LCS programme in Greece and the current TF's remit includes setting a framework for national implementation and national LCS guidelines.

Currently, Portugal does not have a national LCS programme. However, in December 2022, the Portuguese Minister of Health announced an expansion of the national cancer screening strategy to include lung, prostate and stomach cancers. This initiative involves pilot projects aligned with Europe's Cancer Beating Plan [34]. Furthermore, a subsequent cost-effectiveness study has provided clear evidence supporting the viability of implementing LCS in Portugal [35]. Following this development, Portugal has recently become an IARC (International Agency for Research in Cancer) Participating State. LCS has been identified as a key area of collaboration between Portugal and IARC, with particular emphasis on the evaluation of cancer control programmes [36].

Australia is planning a national LCS programme through engagement with key stakeholders that started in July 2025 [37].

Asia presents heterogeneity in national LCS programmes, with significant differences in the inclusion criteria [38–42].

Table 1 summarises all national LCS programmes available per continent including their estimated duration, funding sources and participation targets.

Question 2: what are the benefits of LCS?

The benefits of LCS have been thoroughly investigated and demonstrated over the past decade in numerous European and international studies, with LC mortality reduction being the most significant

Country	untry Estimated Eligibility criteri duration		Funding source	Frequency of screening scans	Participation targets
Europe					
Croatia	1 October 2020–2024	50–75 years old 30 pack-years <15 YSQ	Croatian Health Insurance Fund	NA	Targeted: 12 000 Screened to date: 887
Czech Republic	1 January 2022–2026	55–74 years old 30 pack-years <15 YSQ	Czech Ministry of Health, public health insurance	NA	Targeted: NA Screened to date: 810
Poland	2020–2023 50–74 years old Ministry of Health and the 20 pack-years European Social Fund <15 YSQ		NA	Targeted: 16 000 Screened to date: 14 000	
North America		•			
USA	2015–NA	50–NA 20 pack-years <15 YSQ	Federal health insurance programme, the Centres for Medicare and Medicaid Services	NA	Targeted: NA Screened to date: 5.80 of high-risk populatio
Canada (regional)	2008–2016	50–75 years old 20 pack-years PAN-CAN model risk assessment	Third-party donations	Annual	2537/2500 participant
Asia					
Taiwan	iwan 2022–2030 45 female/50 male 74 years old (both sexes) 30 pack-years <15 YSO		Taiwanese Ministry of Health and Welfare	NA	Targeted: 18 000 Screened to date: 340
South Korea	2019–NA	55–74 years old 30 pack-years <15 YSQ	National Health Insurance Service	NA	Targeted: NA Screened to date: 33.1–36.6% of high-ris population
China	2012–2018	40–74 years old 20 pack-years Harvard Cancer Risk Index and seven-point risk for <20 pack-years	Public sector and University Grants, Ministry of Finance and the National Health Commission of China	Single scan	50% of high-risk population

NA: not available; PAN-CAN: Pan-Canadian Early Detection of Lung Cancer Study; YSQ: years since quitting.

[5, 6, 10–13, 32, 43] (table 2). Recent evidence suggests that LCS offers a combined screening of LC, CVD and COPD ("big-3" diseases), therefore extending its utility. In this context, implementation of national LCS programmes is considered highly important.

Reduction of LC mortality

Reduction of LC mortality is an evidence-based benefit of LDCT LCS. Two landmark prospective trials in LCS, the American National Lung Screening Trial (NLST) and the Dutch/Belgian NELSON Trial, have shown a statistically significant decrease in LC mortality of 20% and 24%, respectively [5, 6]. The NELSON trial reported profoundly decreased LC mortality for females over males (by 61% and 24%, respectively) [5] as also confirmed by the Lung Cancer Screening Intervention (LUSI) and NLST trials [6, 12]. This heterogeneity could stem from different relative counts of lung tumour subtypes occurring in males and females. Similarly, other prospective European trials [10–13, 32] and microsimulation studies [44–47] showed that LC mortality decreased by up to 39% at a 10-year duration of LCS [32]. Although, a substantial reduction in overall mortality or non-LC-related mortality has not been clearly demonstrated [10, 13], it seems that prolonged LCS has an impact on overall mortality reduction [48–50].

Early-stage LC detection

Early-stage LC detection is another pivotal evidence-based benefit of LCS. Early diagnosis is the fundamental scope of LCS and it is meant to be followed by treatment options with curative intent. Most new LC cases (up to 73%) diagnosed by LCS are early stage [5, 6, 10, 51] and amenable to treatment with curative intent (up to 87.5%) and these findings have been associated with an improved 10-year survival

EUROPEAN RESPIRATORY REVIEW

TABLE 2 Benefits of low-o	TABLE 2 Benefits of low-dose computed tomography lung cancer screening					
Study name, first author [ref.] (study type)	Population studied	Lung cancer mortality reduction	Early lung cancer detection	Significant life-years gained	Overall mortality reduction	Cardiovascular mortality reduction
National Lung Screening Trial The National Lung Screening Trial Research Team [6] (RCT)	55–75 years old 30 pack-years 15 YSQ	20.0% (95% CI 6.8–26.7)	50% stage IA and IB 7% stage II	Not studied	6.7% (95% CI 1.2–13.6)	Multivariate analysis showed that the three algorithm scores (Emphy-Alg, LD-Alg and CCS-Alg) were associated with CVD mortality, with odds ratios of 1.72 (p=0.003) and 2.62 (p<0.0001) for coronary calcium scores of 101–400 and above 400, respectively Similar results were shown for the incidence of CVD, with odds ratios of 1.96 (p<0.0001) and 4.94 (p<0.0001) for CCS scores of 101–400 and above 400, respectively Also, emphysema percentage demonstrated an odds ratio of 0.89 (p<0.0001)
NELSON DE KONING [5] (RCT)	50–75 years old 30 pack-years <10 YSQ	24% (95% CI 0.61–0.94) in men 61% (95% CI 0.38–1.14) in women	58.6% stage IA and IB 9.3% stage II	Not studied	Not statistically significant	Not studied
MILD PASTORINO [32] (RCT)	49–75 years old 20 pack-years <10 YSQ	39% (95% CI 0.39–0.95) at 10 years	39.2% stage I 5.7% stage II	Not studied	20% (95% CI 0.62–1.03) at 10 years	Not studied
UKLS FIELD [54] (RCT)	50–75 years old NA Risk prediction model	Not statistically significant In the meta-analysis including UKLS trial: 16% (risk ratio 0.84 (95% CI 0.76–0.92)	67% stage I 19% stage II	137.2	Not statistically significant	Not studied
ITALUNG Bisanzi [31] (RCT)	55–69 years old 20 pack-years <10 YSQ	Not statistically significant	36% stage I (p<0.001) 7% stage II	Not studied	Not statistically significant In the 2 year extended follow-up: 20% (risk ratio 0.80, 95% CI 0.66–0.96)	In the 2-year extended follow-up: 48% (risk ratio 0.52, 95% CI 0.34–0.80)
p-ELCAP SANCHEZ-SALCEDO [51] (Prospective observational cohort study)	>40 pack-years Current or former smokers of tobacco history >20 pack-years	Not studied	73% stage I 9% stage II	Not studied	Not studied	Not studied
DEP-KP80 Leleu [52, 82] (Results of second round, prospective multicentric study)	55–74 years old ≥30 pack-years <15 YSQ	Not applicable	4.8% carcinoma <i>in</i> situ, 64.3% stage I, 7.1% stage II,	Not applicable	Not applicable	Not applicable
USPSTF MEZA [56] (Modelling study)	50–80 years old 20 pack-years <15 YSQ	Not studied	Not studied	6018–7596 estimated life-years gained per 100 000 population	Not studied	Not studied

CCS-Alg: coronary calcium score algorithm; CVD: cardiovascular disease; Emphy-Alg: algorithm on emphysema; LD-Alg: liver density algorithm; NA: not available; RCT: randomised controlled trial; YSQ: years since quitting.

rate of 80% and 10.7 years mean survival time [51, 52]. Early LC detection is also perceived by participants as personally beneficial for early LC detection [53].

Significant estimated life-years gained and significantly decreased cardiovascular mortality

LCS has been also shown to result in significant estimated life-years gained ranging from 6018 to 7596 per 100 000 population [45, 54–56].

The LDCT protocol applied during LCS can also screen for CVD. LCS is related to significantly decreased CVD-related mortality, when assessing and reporting a known cardiovascular risk factor such as coronary artery calcification (CAC) [57]. A CAC score seems to be directly associated with the cardiovascular events and in particular a cut-off >400 may predict cardiovascular events and cardiovascular-related death [58]; therefore, its inclusion in an LDCT report may result in changes in cardiovascular management [59–61] A retrospective analysis from the NLST using machine-learning algorithms showed that Coronary Calcium Score (presented as CCS-Alg), liver density (presented as LD-Alg) and emphysema (presented as Emphy-Alg) in combination with age, gender and pack-years, can be used in clinical practice as predictors in CVD incidence and mortality [62].

Smoking cessation

Smoking cessation has been identified as an additional LCS benefit. Reported quit rates at 1 year in LCS programmes range from 11.3% to 13.5%, which are at the lower end of the estimated quit rates in LCS clinical trials [63, 64]. The success rate of smoking cessation enhances the LC-specific mortality reduction achieved by LCS. Combining smoking cessation for a period of 15 years with LDCT screening, LC-specific mortality is reduced by 38% [65]. There is also a great benefit regarding overall survival of early-stage LC patients for those who quit smoking [66].

Incorporating smoking cessation intervention into LCS can result in a 73% increase in LC deaths averted and save 200 extra life-years [67, 68].

Further to the above, current literature does not provide detailed evidence on the additional health benefits of smoking cessation in the context of LCS. There is a lack of evidence regarding the additional long-term benefit of smoking cessation in emphysema and CAC in the context of LCS programmes. However, there are several published studies on smoking cessation and abstinence rates achieved in LCS studies when smoking cessation is simultaneously offered [69–74].

However, smoking cessation is beneficial for other health entities, including emphysema and CAC, which can be incidentally detected during LCS. This alludes to the overall health benefits to be achieved through the inclusion of smoking cessation in LCS programmes, which remains to be further investigated in prospective LCS cohorts.

LCS efficiency and cost-effectiveness

LCS implementation is usually run by the national healthcare services delivered through each country's health system. The implementation of LCS as a public health intervention should be informed by cost-effectiveness and efficiency studies. LCS effectiveness is facilitated by complementary screening and smoking cessation interventions rather than either of those as a standalone. Therefore, policy makers and clinicians should offer LCS and smoking cessation as complementary interventions [75, 76].

In addition, cost-effective health interventions contribute to sustainable health systems [48, 77, 78].

COPD screening

In addition to LC and CVD, the LDCT protocol used in LCS can be applied to screen for COPD. This establishes LCS as a potential screening tool for the big-3 diseases (LC, CVD and COPD). The LDCT protocol can be used to assess quantitatively pulmonary density and bronchial wall thickness for COPD and identify undiagnosed COPD participants who are at high risk for LC [79, 80].

LCS also provides an opportunity to intervene in high-risk smokers and promote tobacco cessation, as highlighted in the "Smoking cessation" section of this manuscript.

Overall, the benefits of LCS further enhance its effectiveness and beneficial role [81], as summarised in table 2.

Question 3: which are the potential LCS risks?

Potential LCS risks are generally related to radiation exposure, false-positive results, overdiagnosis and unnecessary biopsies/interventions for benign conditions, which can potentially lead to unnecessary testing complications and psychological consequences [43, 53, 83].

Radiation cancer risk

Although LDCT is associated with significantly reduced lung radiation doses, its long-term impact on the radiation cancer risk of the screened population warrants further investigation [84, 85].

The COSMOS trial is the only study estimating long-term radiation exposure following 10 annual screening rounds in high-risk individuals [66], which was 9.3 mSv for men and 13.0 mSv for women, whereas the upper limit of acceptable radiation exposure to the public and healthcare professionals is much higher (1 mSv·year⁻¹ and 20 mSv·year⁻¹, respectively) [86–88]. Cancer risk and radiation exposure from LCS LDCT can be considered acceptable in view of the significant mortality reduction associated with LCS [43, 86–88].

Personalised screening strategies and risk stratification models with considerations of gender, age, interval time, duration and new technologies of LDCT imaging are needed to reduce unnecessary radiation exposure.

Radiation-related LC risk

Radiation-related LC risk stemming from LCS participation is significantly less than the LC risk carried by LCS participants due to their smoking status [53, 56, 86, 89].

Females seem to be more sensitive in quantified radiation exposure due to their breast tissue; however, there are no relevant studies addressing the radiation exposure related breast cancer risk and LC risk in high-risk females undergoing LCS [56, 86].

False-positive results

Nodules are a common LCS finding that can trigger further unnecessary investigations [5, 6]. False positivity in LCS trials ranges from 0.76% to 25.9% [5, 6, 45, 56, 81, 90–95].

This notable variation is likely due to the different definitions of positive screen results and nodule management protocols. The use of risk-prediction models and comorbidities in selection criteria further amplifies the variation in false-positive rate as nodules are more frequently detected in individuals with abnormal lung parenchyma [46, 90, 91].

Radiation reduction in LCS imaging protocols may contribute to increased false-positive rates. Radiation reduction by 50% results in a 60% increase of mean false-positive rates despite the use of computer-aided detection tools [43, 96].

LC overdiagnosis and overtreatment

Overdiagnosis is a cancer detection that would not become evident nor fatal in an individual's lifetime should they not be screened. Overdiagnosis may affect the quality of life due to unnecessary aggressive treatments for a tumour that would be clinically indolent. Overdiagnosis rates in LDCT screening programmes range from 3.91% to 21.5% [45, 46, 56, 97], while in LDCT-screening trials they reached up to 25.4% after an average follow-up of 4.5–5.8 years since the last screening visit [5, 11, 53, 98–100].

Overdiagnosis rates seem to decrease with prolonged follow-up after the final screen; as in the NLST trial, where overdiagnosis decreased from 18.5% at 3.3 years to 3.1% overall at 12.3 years [101]. Overtreatment can be a direct consequence of overdiagnosis and it is a relevant potential harm of LCS. Similarly to overdiagnosis, overtreatment is an aggressive treatment of a cancer detection that would not become fatal in an individual's lifetime should they not be treated. The growing use of LDCT screening may lead to LC overdiagnosis and treatment, and it seems to have a greater impact in women than men; therefore, it is important to improve risk-based prediction models along with gender-specific strategies to minimise overdiagnosis and overtreatment [49, 102–104].

Unnecessary interventions/biopsies for benign disease

False-positive screening tests are an attributed LCS risk as they can be followed by unnecessary invasive investigations with a rate between 0.01 and 2.0% [5, 6, 12, 13, 32, 81, 90, 91, 93, 94].

HRQoL (health-related quality of life) as a risk of LCS

LCS false-positive results or significant benign incidental findings or negative scans do not affect overall HRQoL. True positive findings are associated with worse short-term and long-term HRQoL [105]. LCS findings requiring radiological follow-up do not significantly impact HRQoL in comparison with negative LCS screens [106].

Psychosocial consequences

Psychosocial consequences pose an important risk of LCS programmes [92, 105–109].

LCS participants do not present any significant difference in anxiety levels or psychological distress within the first 4 weeks of LCS [105, 108]. False-positive results increase anxiety levels or cancer distress at 1–4 weeks following baseline LDCT [92, 106, 107] and do not pose long-term psychological consequences up to 24 months after the baseline LDCT [92, 105, 107]. Analyses of the NLST screening cohort [105], the NELSON trial [110], the Prostate, Lung, Colorectal, and Ovarian Cancer Screening Trial (PLCO) [111], the UKLS trial [82, 107], as well as meta-analyses, have demonstrated that LCS is associated with negligible physical or psychological long-term impact on participants [112] and these findings were also confirmed in real-world settings [108, 112].

Question 4: which modalities/services should be included in LCS?

Current data suggest that LDCT is the imaging modality of choice for LCS due to proven mortality reduction and early-stage diagnosis. Other imaging methods have been studied for LCS (magnetic resonance imaging (MRI) and photon-counting detector CT) with insufficient evidence to support their routine use. Pulmonary nodule Lung Reporting and Data System (LungRADS) classification and reporting are similar in LDCT and ultra-low dose CT (ULDCT); however, ULDCT is superior to LDCT in differentiating the underlying infective nature of pulmonary nodules. The use of ULDCT remains to be further validated in high-risk population subject to LC screening. Concomitant access to smoking cessation and LCS reduces further LC related mortality and it should be offered as part of the LCS programmes. There is insufficient data to support the provision of spirometry as part of LCS.

Imaging modalities

LDCT

There is solid evidence that LDCT is the imaging modality of choice for LCS due to its high sensitivity for LC detection with low radiation exposure. The benefits from LDCT screening in reducing LC mortality are well-established [6, 15, 113]. LDCT screening allows for LC diagnosis in earlier stages [114, 115]. A multidisciplinary approach including thorough pre-screening evaluation, joint decision-making, centralised coordination of screening-related care, and patient size adjusted scanning protocols is critical for a safe and successful LCS programme [116]. Novel imaging CT modalities have emerged [117]; however, further evaluation is required before they are considered in clinical practice and in the health decision-making process for LCS implementation.

ULDCT

ULDCT with full iterative reconstruction for LCS has been investigated to further reduce the risks associated with radiation exposure. ULDCT's diagnostic ability is not inferior to LDCT for nodule detection while radiation exposure is one-tenth of the exposure of conventional LDCT (0.14 *versus* 1.48) and it seems there is agreement on LungRADS criteria and reporting [118]. However, limitations concerning the relationship between the subjects' constitution and the image quality exist with regards to the nodules' characterisation and the overall evidence is not sufficient yet for standard use of ULDCT in LCS [119], although ULDCT is feasible for the evaluation of the potential infectious nature of pulmonary nodules. Pulmonary nodule LungRADS classification and reporting is similar in both LDCT and ULDCT.

MRI

In the same context of reducing radiation harms, MRI has been studied as a potential radiation-free alternative to LDCT for LCS. Although the results are comparable to LDCT for solid tumours >6 mm, there is not enough evidence to support its use due to the small number of patients studied while the requirement for specialised radiologists in MRI reporting to achieve high diagnostic performance is a limitation. Therefore, MRI is not indicated for LCS [120, 121].

Smoking cessation

Incorporation of smoking cessation into LCS reduces LC mortality and it delays overall deaths *versus* screening only, across all assumptions [122–124]. A 10% quit rate results in 14% fewer LC deaths and an up to 81% increase in healthy lung-years gained compared with LCS without smoking cessation [125].

Incorporating smoking cessation intervention into LCS can increase smoking quitting rates by 13%, save 200 extra life-years and result in a 73% increase in LC deaths averted [67, 68].

There is a great diversity in the inclusion and implementation of smoking cessation across various LSC programmes [115, 126–131] as well as the prescription of medication (nicotine replacement therapies, bupropion or varenicline) [132].

Current evidence suggests smoking cessation should be included in LCS programmes, although there is no standardised approach on its integration and implementation [133]. More data is required concerning the most cost-effective type and modality of intervention.

Among 1034 individuals undergoing LCS through the centralised programme, 605 were currently smoking and comprised the study cohort. Nearly half (49.8%) reported interest in tobacco treatment counselling and pharmacotherapy and received a personalised treatment plan. On multivariate analysis, factors significantly associated with expressing interest in treatment included African American/Black race, higher educational attainment and returning visit type. Among the 301 individuals expressing interest in tobacco treatment, 35 (11.6%) had documentation of self-reported smoking cessation in the electronic health record. Successful smoking cessation for any length of time was significantly associated with receiving at least one longitudinal tobacco cessation counselling telephone call.

Shusted *et al.* [134] described that in a centralised LCS programme combined with smoking cessation, factors such as race, education and visit type were significantly associated with willingness to stop smoking and pharmacotherapy, while longitudinal tobacco counselling telephone calls were associated with smoking cessation.

In a well-organised LCS programme combined with smoking cessation, the addition of telephone counselling could also help to improve the overall cost-effectiveness of LCS [135].

The concept of integrated care combined with medication and counselling for smoking cessation demonstrated more prolonged benefits (highest abstinence rates up to 30%) at 6 months in an LCS setting than quitline counselling with or without medication, as described in randomised clinical trial by CINCIRIPINI *et al.* [136].

Interestingly, this trial demonstrated that integrated care was superior to other cessation methods with a nearly two-fold improvement in quitting. Equitable access to effective medications and tobacco cessation specialists offers the greatest chance to quit smoking and significantly reduce the potential of LC [136].

Ongoing trials such as the SCALE collaboration, the YESS trial and 4 In The Lung-Run will hopefully provide answers in the coming years [137–139].

Spirometry

Spirometry's role in LCS remains arbitrary. It is an important tool to diagnose airway diseases and when performed before LDCT in the context of LCS it is likely to diagnose a large number of patients with unknown airway obstruction [140].

There are no randomised studies comparing the impact of LCS LDCT with and without spirometry and the addition of spirometry in LCS LDCT is not associated with increased LC survival or other benefit. Therefore, there is currently no evidence supporting the integration of spirometry into LCS programmes and its inclusion in the health decision-making process for change of current practice in LCS implementation pending dedicated randomised studies [72, 141].

Question 5: Who should be included in LCS?

There is no evidence regarding the optimal age criteria or the optimal quantified smoking status cut-off for inclusion in LCS. The panel supports that age and smoking status should be based on national epidemiological LC data allowing LCS adaptation to each country's needs.

There is currently no evidence to support the inclusion of never-smokers, occupational or environmental factors in LCS. The inter-relation between asbestos exposure and other LC risk factors should be clarified to determine the potential benefit for exposed individuals to be included in LCS programmes.

Patients with a previous history of LC should be offered oncological follow-up as per national guidelines rather than LCS.

Optimal age criteria

One of the core elements of any successful LCS programme is the identification and accurate selection of people at high risk for LC who would benefit from their inclusion in a large-scale LCS programme [142–146]. There are no randomised controlled trial (RCT) comparative data regarding the optimal age cut-off in LCS inclusion criteria.

Age selection criteria in LCS studies and subsequent LCS guidelines have been arbitrary [5, 6, 11–13, 15, 32, 54, 57, 147–149].

However, most reviewed papers adopted age inclusion criteria as defined by major LCS studies [5, 6, 11–13, 32, 54, 57]. The lower age cut-off values in the literature were similar to these of the NLST, UKLS and NELSON study groups (50–55 years old) while the upper age limit was 75–80 years [5, 6, 54, 150, 151] with improved LC mortality. These findings are based on epidemiological data which support that the increasing age and smoking status are relevant with the development of LC.

Smoking status criteria

There is no RCT comparative data producing solid evidence regarding the optimal quantified smoking status cut-off in LCS inclusion criteria. Reviewed papers presented a wide variation of LCS participant smoking status and its quantification [152]. Most LCS studies included participants based on an arbitrary smoking cut-off value of 20–30 pack-years [5, 6, 10–13]. This cut-off value seems meaningful when combined with current smoker status or ex-smoker status within the past 15 years, as shown by a model analysis and microsimulation study comparing eligibility strategies for LCS [153, 154]. This combination could avoid more than half of the preventable LC deaths by screening approximately 20% of all current and former smokers [155, 156]. In 2021 the USPSTF modified its initial guidelines by lowering the age and number of pack-years screening eligibility [148, 157, 158]. However, while acknowledging that the cessation of cigarette smoking decreases the risk for LC, the American Society of Cancer (ASC) panel does not agree with the 15-year restriction (i.e. ex-smoker status within the past 15 years) set in several trials [158]. Individuals who previously smoked have a higher risk for LC compared with those who have never smoked and the ASC claims there is no substantive drop-off in that risk after 15 years since quitting. The ASC panel also has not placed a time limit for screening eligibility after smoking cessation, because the 15-year restriction is not based on or justified by evidence. However, there is no evidence in the reviewed literature that any timeframe after smoking cessation is accepted as high risk for LC and this needs to be tailored to national public health systems considering the cost of LCS implementation and national epidemiological data.

According to the reviewed articles and the International Association for the Study of Lung Cancer Screening committee report there is still no evidence for inclusion criteria in LCS of light smokers (<10 pack-years) or never-smokers as more accurate risk prediction/benefit models should be implemented [159].

Professional and environmental exposure criteria

There is an ongoing controversy whether asbestos-exposed workers should be included in large scale LDCT screening. The major weakness of papers including asbestos exposure was the lack of data on the intensity and years of exposure on both smoker and nonsmoker population, therefore hindering any clarity on the exact effect of asbestos on lung function, mortality and cancer predisposal [160]. Against this background, the ACR suggested that there is still insufficient evidence for an LDCT screening protocol for these patients [147]. However, it has been recently proposed that workers aged \geq 50 years and with a history of \geq 5 years of asbestos exposure in combination with either a smoking history \geq 10 pack-years or <15 years since quitting or other LC risk factors (asbestos-related fibrosis and chronic obstructive or interstitial lung disease) should be eligible for LCS [161–163]. Further evidence is required prior to adoption by national LCS programmes although the asbestos ban has decreased the possibility of future RCT evidence.

There is no RCT comparative data producing evidence on air pollution exposure to be included in LCS eligibility criteria. Environmental exposure in the form of second-hand smoke exposure during adulthood was included only in one study, without an add-on [164, 165].

Family history of LC

There is limited scientific data to support the inclusion of family history of LC in LCS eligibility criteria. However, family history of LC has been included in validated LC risk stratification models and its use has been proposed in the eligibility assessment in addition to age and smoking [162, 166–169].

Reported data from Taiwan's national screening programme revealed a particularly high cancer detection rate of 6.2% (8/129) in individuals with a positive family history of all types of cancers in first-degree relatives regardless of age whilst 61.76% of all screen-detected cancers were radiographically occult [170].

Question 6: which is the optimal risk prediction model in LCS?

The panel has conducted an extensive literature review of risk prediction models in LCS and there is no set standard for an optimal model. Among all of them, the PLCOm12 model is the most used and validated externally worldwide with high sensitivity and specificity.

The risk prediction models include individualised variables and improve the identification of individuals at high risk of LC despite being smoke-free for 15 years or more [171, 172]. Similarly, risk prediction models have been developed to identify high-risk individuals regardless of smoking status and they performed well in European countries [41, 173].

The PLCOm12 risk model is a validated LC risk prediction model based on data from the PLCO [174] using 11 predictors. It includes self-reported and doctor-diagnosed COPD [166, 175]. The impact of adding obstructive spirometry to the above is not known but its standalone addition without the above improves the accuracy of an LC risk prediction [176, 177].

A PLCOm12 LC 6-year risk of greater than 1.5% has been proposed as an add-on prerequisite to the LCS eligibility criteria [151, 178].

The Liverpool Lung Project (LLP) risk model, developed from the LLP case—control study, provides a single unified model for current and former smokers as well as nonsmokers. Version 2 of the LLP risk model (LLPv2) and an updated LLPv3 have been validated [162].

The Bach model is based on a person's age, sex and smoking history, but it is predictive only for individuals between the age of 50–75 years, who smoked 10–60 cigarettes day⁻¹ for 25–55 years [179].

The Spitz model expands this concept by incorporating a panel of epidemiological risk factors, similar to the LLP model [180]. Between them, the LLP risk model's simplicity makes it more applicable for use in primary care units [181].

The choice of risk prediction models for screening eligibility is extremely important. Poor model discrimination or calibration can reduce the efficiency and cost-effectiveness of screening [182].

Various risk models include different variables. The LLP/LLPv2/LLPv3 models include only one variable for smoking duration, whereas the Lung Cancer Death Risk Assessment Tool (LCDRAT) includes smoking duration, pack-years, quit-years and intensity. Most models (e.g. PLCO and LCDRAT) were developed using USA data, whereas the LLP/LLPv2/LLPv3 models were developed in the UK [183–185].

PLCOm12 and LLPv2 have been implemented successfully in LCS studies; however, there is lack of evidence to conclude whether either of those is the optimal risk model [186–188].

Several models have been evaluated in population cohort studies in the USA, non-USA evaluations are scarce and none include data from UK cohorts [189–191].

The PLCOm12 risk prediction model is more efficient than the USPSTF 2013 inclusion criteria as it selects significantly more individuals for screening who are later diagnosed with LCs. Moreover, it eliminates social disparities who had been undermined in several risk models [192].

The PLCOm12 model has been validated by different research teams worldwide. It is the most commonly used risk model. It has shown acceptable performance in external validation, with higher sensitivity and specificity, resulting in an increased early LC detection rate and elevated life expectancy [83, 145, 193–198].

Question 7: which is the optimal biomarker in LCS?

There is lack of evidence suggesting the optimal biomarker in LCS; however, current data support the overall use of biomarkers can potentially complement LCS [199]. Extensive clinical validation of biomarkers is required to lead to future integration in LCS programmes and their inclusion in health decision-making processes in LCS. The panel cannot support the use of biomarkers in LCS, only in the context of a clinical trial.

There is a vast variety of biomarkers aiming to identify high-risk populations for LCS and complement LDCT's role with a view to improve its efficiency and diagnostic accuracy and avoid further invasive testing [200, 201].

Biomarkers explored to date were derived mainly from blood, urine or condensate samples. Some of them have synchronous use of imaging, mainly LDCT.

Serum biomarkers

The best-known panel is EarlyCDT-Lung (Oncimmune's Clinical Laboratory Improvement Amendments laboratory), which is a seven-autoantibody panel extensively validated in different cohorts [202, 203]. This panel has shown good performance in classifying indeterminate pulmonary nodules with sensitivity of 40% and specificity of 90% [204].

A second test, Nodify XL2 (Biodesix), a multiprotein plasma classifier, is also available for the classification of indeterminate pulmonary nodules and it measures 11 plasma proteins. The classifier identified likely benign lung nodules with 90% negative predictive value and 26% positive predictive value (PPV) [205].

In addition, the MSC test (a plasma microRNA signature classifier) was retrospectively evaluated in samples prospectively collected from smokers within the randomised Multicenter Italian Lung Detection (MILD) trial. Combination of both MSC and LDCT resulted in a five-fold reduction of LDCT false-positive rate to 3.7%, from 19.7% for LDCT alone [201, 206, 207].

Serum metabolites derived from gas chromatography coupled with mass spectrometry have been used to distinguish individuals with early-detected LC from healthy participants of the Polish LC screening programme with 100% sensitivity and 95% specificity. This signature of serum metabolites deserves further investigation to be established [208].

The role of LC-related tumour markers (carcinoembryonic antigen (CEA), , carbohydrate antigen 125 (CA125), cytokeratin 19 fragment (CY211), neuron-specific enolase (NSE) and squamous cell carcinoma antigen (SCC)) has been studied in LCS [209].

Their sensitivity and specificity increased when paired and the optimal combination was CEA + CA125 with sensitivity and specificity of 0.755 and 0.791, respectively [210]. Although this combination of biomarkers seems promising, it requires further validation and potential considerations should be encountered about its correlation with imaging.

Small extracellular vesicles (sEV) circulating in human biofluids have been identified as a potential source of cancer biomarkers but further testing in individuals did not support their use [211, 212].

Breath biomarkers

Exhaled breath condensate (EBC) is a promising matrix in which biomarkers can be identified with noninvasive sampling and real-time analysis; however, its composition has not been thoroughly studied. Volatile organic compounds (VOCs) and nonvolatile matters are contained in exhaled aerosol particles [213].

The high negative predictive value of VOCs obtained through breath sample analysis indicates the role of EBC in reducing cases subjected to confirmatory tests following an abnormal LCS scan [214, 215].

Miniature electronic nose (e-nose) systems can identify "breath fingerprints" based on human breath and could be used to recognise LCS participants with greater than 90% of sensitivity, specificity and accuracy. One designed e-nose system is low-cost, noninvasive and, following successful validation, it may be applicable in LCS [216]. Its combination with blood serum biomarkers could be promising, however it remains to be studied.

The use of a personalised gene-based risk tool in LCS has been shown to present a useful predictive utility to risk assignment for LC and it also increases participants' engagement in LCS for both baseline screening (uptake) and subsequent positive CT scans [217, 218].

To date, published evidence does not support the use of a single biomarker as a complementary step in LCS and possibly the use of a combination of biomarkers or a panel of biomarkers may seem the next logical step in the process. To date, published evidence does not provide solid data to support the complementary use of combinations of biomarkers in LCS and this area should be further explored [199].

Table 3 provides an overview of serum and breath biomarkers studied in LCS.

Question 8: what is the appropriate LCS interval in candidates with normal baseline LDCT?

LCS intervals longer than 2 years are more cost-effective and use fewer resources. They result in a higher proportion of diagnosis in advanced disease stage compared with shorter screening intervals. Biennial and annual LCS present similar overall and LC-specific mortality, early-stage diagnosis, quality-adjusted life-years (QALYs), sensitivity and specificity. Biennial screening is more cost-effective, uses fewer resources without compromising screening benefits and presents less overdiagnosis and fewer false positives. Against this background, the panel supports the implementation of biennial LDCT with consideration of risk stratification models to shorten the interval to annual and offer an adaptive approach, should this be required.

Annual LC screening

Annual LCS shifts LC diagnosis to an earlier stage similarly to biennial LCS and this is linked with higher resection rates (annual resection rates 74% *versus* biennial 53%, p=0.0004) and similar overall mortality, LC-specific mortality, stage II–IV LCs and interval LCs [219–221]. Annual and biennial LCS have similar recall rates for invasive procedures (1.3% annual *versus* 1.1% biennial, p=0.35) and similar other performance indicators (including detection rate of early-stage LC, frequency of interval cancer, sensitivity, specificity, PPV and negative predictive value) [95, 222]. Risk stratification models could identify candidates for LCS intervals longer than 1 year; however, the ersonalised decision-making should be the mainstay of an efficient LCS programme [55, 223–226]. Annual and biennial LCS present similar QALYs over 20 years, with annual screening using more resources [226].

Biennial LC screening

Biennial LCS may save about one-third of LDCTs with similar performance indicators to annual screening [95, 219, 222]. It presents less overdiagnosis and false positivity [56], but results in fewer LC deaths avoided and fewer life-years saved than more frequent screening [55]. On balance, biennial LCS results in similar QALYs over a 20-year screening period and is more cost-effective [226].

Biennial and annual screening are associated with a similar overall and LC-specific mortality and similar detection rate of early-stage LC. Overall, biennial screening is more cost-effective; it uses fewer resources than annual screening and reduces the number of follow-up LDCTs.

TABLE 3 Serum and breath biomarkers studied in lung cancer screening					
Study name/type, references	Sensitivity (%)	Specificity (%)	Number of patients	Degree of validation (%)	
EarlyCDT Lung [202–204]	54.6	90.3	235	92	
Nodify XL2 (Biodesix) [205]	92	48	141	Not applicable	
microRNA test [206]	77.8	74.8	1115	74.9	
Serum metabolites (GC-MS) [208]	100	95	Not applicable	Not applicable	
MicroRNA Signature Classifier [206-208]	87	81	939	95	
Tumour markers [210]					
CEA+CA125	75.5	79.1	633	Not applicable	
CEA+CY211	76.1	71.8	Not applicable	Not applicable	
Small extracellular vesicles [211, 212]	Not applicable	Not applicable	243	Not applicable	
E-nose [216] (LDA-Fuzzy 5-NN)	95.6	91.72	235	93.59	
Volatile organic compounds [214, 215]	100	92.86	428	95.74	

CA125: carbohydrate antigen 125; CEA: carcinoembryonic antigen; GC-MS: gas chromatography—mass spectroscopy; LDA—Fuzzy 5-NN: linear discriminant analysis—fuzzy k-nearest neighbour, with k=5.

Longer LC screening intervals

There is scarce data regarding longer screening intervals. The NELSON study compared various screening intervals (1.0, 2.0 and 2.5 years). The 2.5-year interval reduced the effect of screening, as it was associated with a higher proportion of advanced-stage disease [220]. Triennial screening was studied in microsimulation studies and it was associated with up to 21.9% delayed diagnosis, while potentially overlooking a substantial proportion of stage I LC. It was also associated with fewer LC deaths avoided and fewer life-years saved [55, 222]. However, the BioMILD trial showed that a triennial screening interval could be acceptable in an LCS programme with combined blood microRNA testing and LDCT in a personalised setting. This remains to be further explored in a real-life LCS programme [227].

Subsolid pulmonary nodules have a different biological nature; therefore, following their reporting in a screening LDCT they need to be followed-up as per established guidelines

Overall, longer screening intervals reduce the number of LDCTs and screening rounds, while they result in an important increase in delayed diagnosis and therefore reduce the effect of screening.

An adaptive LCS approach, starting with biennial screening and switching to annual screening based on prespecified parameters, needs to be considered further as it performs well and can be realistically applied in settings with limited CT scanner capacity and personnel shortages [228].

Table 4 summarises studies comparing different LCS intervals.

Question 9: what is the optimal duration of an LCS programme?

Currently, there is no evidence consolidating a proposed optimal or maximum duration for LCS. Considering a meaningful use of public health resources, performance status and comorbidities should be considered prior to LCS to ensure the candidate is suitable for radical LC treatment. Therefore, annual clinical evaluation is advised to inform the LCS continuance. National epidemiological data with regards to life expectancy, quality of life and LC incidence may guide the decision on LCS duration on national level.

The comparison of variable follow-up LCS durations among several studies showed that prolonged LCS beyond 5 years provides solid evidence for its long-term benefit [229]. The maximum LCS duration presented in studies is 10 years, which was associated with a significant mortality reduction in comparison with a shorter LCS duration [32]. Therefore, a prolonged intervention beyond 5 years can enhance the benefit of screening [229].

The roles of comorbidities, performance status deterioration and age in LCS duration have not been thoroughly studied. The optimal age cut-off for discontinuing LCS remains unclear, although most studies have included participants aged up to 75 years old [5, 6, 10–13]. It also remains unclear whether irreversible life-debilitating comorbidities (and which ones) constitute a reason to stop LCS and if irreversible performance status deterioration is a reason to stop LCS [146, 230]. Overall, comorbidities impact the life-years gained from LCS and this should be considered by clinicians when discussing its benefits and risks with high-risk individuals [231].

There are only two LCS studies including comorbidities and neither of them report them as a reason to stop LCS [51, 232] and there are no studies presenting data on performance status and age cut-offs in association with LCS duration.

Despite the lack of evidence, current USPSTF guidelines [15, 148, 233] suggest that LCS should cease when the candidate does not meet the requirements for radical treatment. In a pragmatic clinical setting, those requirements are defined as permanent deterioration in performance status and/or significant comorbidities excluding the candidate from receiving radical treatment.

Question 10: which are the technical requirements for LCS?

LDCT is the recommended modality for LCS and the integration of radiology software is a promising contributor to the diagnosis and management of lung nodules. The panel supports the following optimal technical standards to ensure state-of-the-art LDCT protocols and LCS quality. The panel also supports central data storage with respect to General Data Protection Regulation legislation and national monitoring.

First author [ref.] year	Type of study	Number of participants	Age (years)	Screening interval	Results
Pastorino [219] 2019	Randomised controlled trial	2376	49–75	Annual, biennial	Similar overall mortality and LC-specific mortality at 10 years Biennial screening saved 44% of follow-up LDCTs
Yousaf-Khan [220] 2017	Randomised controlled trial	7915	50–75	1-, 2- and 2.5-years (consecutive rounds with increasing intervals)	The proportion of stage I LC and stage 3b/4 LC was similar after 1- and 2-year screening intervals
Sverzellati [95] 2016	Randomised controlled trial	2303	50–75	Annual, biennial	After annual and biennial screening, similar detection rate of early-stage LC, frequency of interval cancer, sensitivity, specificity, PPV, NPV Biennial screening saved one-third of LDCT scans
SILVA [222] 2021	Retrospective analysis	1248	55–75	Annual (simulation for biennial and triennial)	Rate of delayed diagnosis 4.5% for annual, 13.6% for biennial and 21.9% for triennial Reduction of LDCT burden up to 25.5% for biennial and 41% for triennial screening
Rоввіns [223] 2019	Retrospective analysis	23 328	55–74	Annual	A negative LDCT (no >4 mm nodules) is not enough to justify a longer screening interval than 1 year The LCRAT+CT model could identify candidates for longer screening intervals than 1 year
Handy [221] 2020	Retrospective analysis	3402	55–80	Annual	LC screening with annual LDCT in a community healthcare setting demonstrated LC diagnosis (2.8%), stage shift (75% NSCLC stage 1–2 or limited SCLC), intervention frequency (14.6%) and adverse event rate (10.1%) similar to the NLST
ZHANG [225] 2020	Retrospective analysis	118	40–74	Annual	No justification to increase screening interval beyond 1 year based on the PLCOm2012 model, age and smoking history
González Maldonado [99] 2021	Retrospective analysis	3395	50–69	Annual	Skipping 50% of annual screenings (participants within the five lowest risk deciles by LCRAT+CT in any round or by the polynomial model baseline screening round) would have avoided 75% (95% CI 21.9–98.7) and 40% (95% CI 21.8–61.1%) false-positive screen tests and delayed 10% (95% CI 1.8–33.1%) or no 0% (95% CI 0–32.1%) diagnoses, respectively
Meza [56] 2021	Microsimulation	288#	45–80	Annual, biennial	20 annual and five biennial consensus-efficient scenarios
МсМаноn [55] 2014	Microsimulation	576#	(45–60)– (75–85)	Annual, biennial, triennial	Annual screening resulted in more lung cancer deaths avoided and more life-years saved, compared with less frequent screening
GOFFIN [226] 2016	Microsimulation	Not applicable [#]	55–74	Annual, biennial	Compared with annual, biennial screening used fewer resources and resulted in very similar quality-adjusted life-years (24 000 <i>versus</i> 23 000) over 20 years

CT: computed tomography; LCRAT: Lung Cancer Risk Assessment Tool; LDCT: low-dose computed tomography; NLST: National Lung Screening Trial; NSCLC: nonsmall cell lung cancer; NPV: negative predictive value; PLCOm2012: Prostate, Lung, Colorectal, and Ovarian Cancer Screening Trial 2012; PPV: positive predictive value; SCLC: small cell lung cancer. **: Scenarios.

Minimum and optimal technical LCS standards

Despite the lack of published research evidence on minimum and optimal technical LCS standards of LDCT hardware/software, LDCT scanning protocols and image acquisition, the European and American radiological societies have issued recommendations addressing the above [234–239].

Our radiology expert panel considered international recommendations in conjunction with the national LDCT infrastructure and national legislation and reached a consensus on CT hardware/software technical standards for LCS as well as a consensus on LDCT scanning protocol and image acquisition, as shown in appendix 2.

Data storage and data safety standards

There is lack of published evidence on data storage and proposed data safety standards for LCS.

Question 11: what is the optimal management of LCS findings?

An efficient LCS programme requires a streamlined process including optimised radiological protocols with emphasis on LCS finding management. Worldwide, the implementation of the optimal nodule management protocol remains a subject of debate. The panel supports the use of a volume-based nodule management protocol according to local feasibility, simplicity and radiology training. To overcome unnecessary investigations and additional costs, the expert panel supports locally agreed protocols, standardised radiology reports and specialised service referrals for incidental thoracic and extra-thoracic findings. This approach is in accordance with good medical practice.

Pulmonary nodules

Published LCS trials in Europe and the US [5, 6, 10–13] provide evidence and knowledge of the effectiveness of the various LCS finding management protocols applied [6, 11, 13, 32, 54, 240, 241].

There is a variation in practice in terms of pulmonary nodule management protocols used in various LCS trials. The LungRADS classification system implemented in the LCS programme in the US serves as a quality assurance tool. In the revised LungRADS criteria, nodule volumetry is included in addition to diameter [242], while European trials showed that volumetry and volume doubling time are more accurate than diameter-based measurements. This led to a reduction in false-positive tests, a lower number of follow-up LDCTs and fewer unnecessary diagnostics [46, 241]. More importantly, volume CT screening is efficient in the detection of early-stage LCs, therefore increasing the benefits of the LCS programme. Given the evidence-based advantages of volumetry, the EU position statement (EUPS) on LCS implementation across Europe strongly recommends and encourages volume-based management protocols of screen-detected solid and subsolid nodules [241] and ESTI provides training to radiologists to consolidate their knowledge in the EUPS protocol [243]. Each management protocol provides specific guidance on the further management of pulmonary nodules with further imaging (e.g. positron emission tomography CT) and invasive investigations.

Other incidental thoracic and extra-thoracic findings

Other incidental thoracic and extra-thoracic findings are commonly detected in LCS programmes (supplementary appendix 3). Examples of incidental findings that may be identified in LCS are listed in the ESR/ERS statement paper [244].

The reported prevalence of incidental findings on LCS programmes is wide [245–250]. The clinical impact of these incidental findings varies. The ESR/ERS statement paper encourages categorising them into findings requiring immediate action, further investigation or are clinically insignificant [244]. Several studies have reported a wide range of clinically relevant incidental findings that were reported [245, 247, 250]. This wide variation of reported incidental findings is likely explained by the lack of standards regarding their reporting and management. Appendix 3 highlights incidental thoracic and extra-thoracic findings that may be identified in LCS.

The ESR/ERS statement paper suggests the development of locally agreed protocols for the management of incidental findings [244] and, recently, the ACR published a relevant quick reference guide [251]. LCS programmes present a great variation in the reporting of incidental findings and there are no international agreed recommendations or algorithms regarding the clinical significance or management of detected incidental findings. To address this existing gap, a multi-European collaborative group has produced a relevant statement for incidental findings at LCS aiming to strengthen their reporting and management [252]. This will impact the effectiveness and cost-effectiveness of LCS programmes. The reporting of minor or clinically insignificant incidental findings can potentially lead to unnecessary investigations [253–257]; therefore, it is important that evidence-based practice is employed. Agreed protocols and standardised reports would be of utmost importance.

Question 12: which are the optimal quality standards in LCS?

There is a lack of published research evidence identifying optimal quality standards. However, they are addressed by international expert opinion panels and committee publications where the importance of quality control and quality assurance in LCS is highlighted. The panel supports that quality control and quality assurance measures are aligned with local infrastructure and management frameworks, as detailed below, to ensure that health decision-making for LCS is appropriately informed.

Several key elements of quality assurance have been recognised to optimise the effectiveness of LCS in daily clinical practice [54, 241, 243, 244, 258, 259].

The ESR/ERS, EU and ACR statement papers on LCS strongly recommend that quality assurance should be mandatory in all steps of LCS implementation with periodic quality controls to ensure adherence to all minimum technical standards [241, 244, 260]. Training for the implementation of quality assurance processes is also considered mandatory. The LCS project by ESTI addresses the above in detail [243].

These recommendations were reviewed by the radiology expert panel, who also considered existing national infrastructure and relevant processes and therefore reached a consensus on the proposed quality control parameters in LCS (appendix 4A).

Question	Answers			
What is the current situation with national LCS programmes worldwide?	Lack of national LCS programmes in most countries worldwide USA, Croatia, China, South Korea, Poland and Czech Republic have launched nationa LCS programmes Some countries offer access through pilot studies Variation in implementation, structure, eligibility criteria and reimbursement			
2) What are the benefits of LCS?	Early lung cancer detection Life-years gained Reductions in lung cancer mortality, overall mortality, cardiovascular mortality and COPD detection in undiagnosed patients			
3) Which are the potential LCS risks?	Radiation exposure False-positive results Overdiagnosis Overtreatment Unnecessary biopsies/interventions and subsequent testing complications Psychological consequences			
4) Which modalities/services should be included in LCS?	Imagin	g (LDCT)# g cessation#		
5) Who should be included in LCS?	Variation in data derived from trials Age inclusion criteria should be based on national epidemiological lung cancer data Smoking status inclusion criteria should be based on national epidemiological data smoking behaviour [#] Some LCS programmes include risk prediction models complementary to inclusion criteria			
6) Which is the optimal risk prediction model in LCS?	PLCOm12 is the most common used and validated model (high sensitivity/specific			
7) Which is the optimal biomarker in LCS?	Lack of evidence and extensive clinical validation is required No evidence regarding the use of combinations of panels of biomarkers			
8) What is the appropriate LCS interval in candidates with normal baseline LDCT?	Biennial LDCT with consideration of risk stratification models to shorten the inte annual, should this be required [#] (adaptive approach)			
9) What is the optimal duration of a LCS programme?	Lack of evidence for optimal or maximum duration for LCS Meaningful use of public health resources requires performance status and comorbidities to be considered prior to LCS [#] Annual clinical evaluation is advised [#]			
10) Which are the technical requirements for LCS?	Hardware [#] Multidetector CT ≥64 detector rows Scan duration <10 s Slice thickness ≤1.0 mm Radiation dose CTDI _{vol} ≤3.0 mGy (adjustment for weight)	Software [#] Volumetry semi-automatically derived software (certified) CAD MPR and MIP		
11) What is the optimal management of LCS findings?	Volume-based nodule management protocol according to local feasibility and radiology training# Specialised service referrals for incidental thoracic and extrathoracic findings			
12) Which are the optimal quality standards in LCS?	Lack of published research evidence identifying optimal quality standards Quality control and quality assurance in accordance with local infrastructure and management mechanisms [#]			

Screening Trial 2012. #: indicates points for clinical practice.

The TF panel supports the establishment of dedicated national quality assurance committees/boards that will perform periodic quality controls and ensure adherence to the pre-defined national procedures and quality standards in all aspects of LCS. These boards will be multidisciplinary and their members will be defined by the national scientific societies of respiratory physicians, radiologists and thoracic surgeons.

Medical physicists and radiographers play an integral role in ensuring quality control of technical aspects related to LDCT and therefore should be in close collaboration with LCS radiologists.

The technical aspects of quality control should include radiology hardware and software, scanning protocol-image acquisition, and image quality. Dose quality standards and quality assurance actions are also required (appendix 4B–E).

Quality assurance also includes a structured radiology (LDCT) report based on a uniform template across LCS centres as recommended by the ESTI LCS project [243, 261]. An extensive list of thoracic and extra-thoracic incidental findings that may be noted in LDCT are listed in appendix 3.

External reviewing processes should be in place to ensure accuracy of reporting and radiologists' performance.

Due the lack of relevant references in the literature, the panel supports dedicated LCS training for healthcare professionals contributing to the LCS programmes. The Hellenic radiologist expert panel agreed on a minimum of 2 years post-specialty training, working experience in a CT department as well as a minimum experience of 200 chest CT scans (independent reading and reporting) per year as prerequisites for each radiologist reporting LCS LDCT scans.

Radiographers working in LCS centres should also be appropriately trained and certified by national bodies.

Adherence to training and certification processes should be ensured by national quality assurance boards.

National LCS programmes should include imaging databases and registries recording LCs and other malignancies detected within them. These registries and databases will contribute towards auditing the LCS programmes and developing research [241].

Conclusion

The societies collaborating for this comprehensive multidisciplinary LCS statement presented a comprehensive overview of all current scientific evidence relating to the 12 narrative questions and aimed to provide answers (table 5). This comprehensive structured narrative review in LCS is the end-product of a multidisciplinary approach from its conception involving respiratory physicians, radiologists and thoracic surgeons from various clinical services and geographic areas as well as patient representatives.

LCS implementation is challenging and it depends on national infrastructure and available resources. The societies collaborating in this document considered LCS services and participants would benefit from a pan-European statement due to potential differences among various countries.

Acknowledgements: The authors acknowledge the Hellenic Thoracic Society, the Hellenic Society of Radiology, the Hellenic Society of Thoracic, Cardiac and Vascular surgeons and the Hellenic Federation for cancer (patient organisation) for supporting this manuscript.

Provenance: Submitted article, peer reviewed.

Conflicts of interest: All authors declare no conflict of interest.

References

- International Agency for Research on Cancer. Data visualization tools for exploring the global cancer burden in 2022. Date last accessed: 22 June 2025. https://gco.iarc.fr/today/data/factsheets/cancers/15-Lung-fact-sheet.pdf
- 2 Hardavella G, Bisirtzoglou D, Stasinopoulou M, et al. National lung cancer screening programs worldwide; an emerging call for early diagnosis. J Respir Dis Treat 2024; 5: 101.
- 3 NHS England. Stage at diagnosis. Date last accessed: 23 June 2025. Date last updated: 2 June 2025. https://digital.nhs.uk/ndrs/data/data-outputs/cancer-data-hub/cancer-stage-at-diagnosis

- Siegel RL, Miller KD, Wagle NS, et al. Cancer statistics, 2023. CA Cancer J Clin 2023; 73: 17–48.
- de Koning HJ, van der Aalst CM, de Jong PA, et al. Reduced lung-cancer mortality with volume CT screening in a randomized trial. N Engl J Med 2020; 382: 503–513.
- 6 The National Lung Screening Trial Research Team. Reduced lung- cancer mortality with low-dose computed tomographic screening. N Engl J Med 2011; 365: 395–409.
- 7 Adams SJ, Stone E, Baldwin DR, et al. Lung cancer screening. Lancet 2023; 401: 390-408.
- 8 Hardavella G, Frille A, Sreter KB, et al. Lung cancer screening: where do we stand? Breathe (Sheff) 2024; 20: 230190.
- 9 Hardavella G, Frille A, Chalela R, et al. How will lung cancer screening and lung nodule management change the diagnostic and surgical lung cancer landscape? Eur Respir Rev 2024; 33: 230232.
- Field JK, Vulkan D, Davies MPA, et al. Lung cancer mortality reduction by LDCT screening: UKLS randomised trial results and international meta-analysis. Lancet Reg Health Eur 2021; 10: 100179.
- 11 Paci E, Puliti D, Lopes Pegna A, *et al.* Mortality, survival and incidence rates in the ITALUNG randomised lung cancer screening trial. *Thorax* 2017; 72: 825–831.
- Becker N, Motsch E, Trotter A, et al. Lung cancer mortality reduction by LDCT screening-results from the randomized German LUSI trial. Int J Cancer 2020; 146: 1503–1513.
- 13 Infante M, Cavuto S, Lutman FR, et al. Long-term follow-up results of the DANTE trial, a randomized study of lung cancer screening with spiral computed tomography. Am J Respir Crit Care Med 2015; 191: 1166–1175.
- 14 Aberle DR. Implementing lung cancer screening: the US experience. Clin Radiol 2017; 72: 401-406.
- 15 US Preventive Services Task Force, Krist AH, Davidson KW, et al. Screening for lung cancer: US preventive services task force recommendation statement. JAMA 2021; 325: 962–970.
- 16 Lung Cancer Canada. Lung cancer screening. Date last accessed: 22 June 2025. www.lungcancercanada.ca/ en-CA/Lung-Cancer/Screening.aspx
- 17 Chiarantano R, Vazquez F, Haikel J R, et al. EP1.11-06 design and implementation of an integrated lung cancer prevention and screening program using a mobile CT in Brazil. J Thorac Oncol 2019; 14: S1009–S1010.
- 18 Hochhegger B, Camargo S, da Silva Teles GB, et al. Challenges of implementing lung cancer screening in a developing country: results of the second Brazilian Early Lung Cancer Screening Trial (BRELT2). JCO Glob Oncol 2022; 8: e2100257.
- 19 Prevence Proplice. Programme for an early detection of lung cancer. Date last accessed: 22 June 2025. Date last updated 2025. https://prevenceproplice.cz/en/
- 20 Juskanic D, Sandor F, Denkova L, et al. Lung Cancer Screening Initiative in Slovakia: Guidelines of screening implementation. Bratisl Lek Listy 2023; 124: 109–115.
- 21 OECD. Croatia: country health profile 2021. Date last accessed: 22 June 2025. Date last updated: 13 December 2021. www.oecd.org/countries/croatia/croatia-country-health-profile-2021-717e5510-en.htm
- 22 Rzyman W, Szurowska E, Adamek M. Implementation of lung cancer screening at the national level: Polish example. *Transl Lung Cancer Res* 2019; 8: S95–S105.
- 23 Cancer Screening Committee. Recommendation on low-dose CT screening for lung cancer. Date last accessed: 26 June 2025. Date last updated: November 2022. https://cancerscreeningcommittee.ch/wp-content/uploads/2022/11/appraisal-report-recommendation-on-low-dose-CT-screening-for-lung-cancer-november-2022.pdf
- 24 Jungblut L, von Garnier C, Puhan M, et al. The Swiss approach feasibility of a national low-dose CT lung cancer screening program. Swiss Med Wkly 2022; 152: w30154.
- 25 NHS England. Evaluation of the Targeted Lung Health Check programme. Date last accessed: 23 June 2025. www.england.nhs.uk/contact-us/privacy-notice/how-we-use-your-information/our-services/evaluation-of-the-targeted-lung-health-check-programme/
- 26 NHS England. UK NSC minutes June 2022. Date last accessed: 28 June 2025. Date last updated: 2 February 2023. www.gov.uk/government/publications/uk-nsc-meeting-june-2022/uk-nsc-minutes-june-2022
- 27 O'Dowd EL, Lee RW, Akram AR, et al. Defining the road map to a UK national lung cancer screening programme. Lancet Oncol 2023; 24: e207–e218.
- 4 In The Lung Run. Population-based lung cancer screening trial. Date last accessed: 29 June 2025. Date last updated: 2025. https://4inthelungrun.com/en-gb/
- Vogel-Claussen J, Lasch F, Bollmann BA, *et al.* Design and rationale of the HANSE study: a holistic German lung cancer screening trial using low-dose computed tomography. *RoFo* 2022; 194: 1333–1345.
- 30 Boeri M, Sabia F, Ledda RE, et al. Blood microRNA testing in participants with suspicious low-dose CT findings: follow-up of the BioMILD lung cancer screening trial. Lancet Reg Health Eur 2024; 46: 101070.
- 31 Bisanzi S, Puliti D, Picozzi G, et al. Baseline cell-free DNA can predict malignancy of nodules observed in the ITALUNG screening trial. *Cancers (Basel)* 2024; 16: 2276.
- 32 Pastorino U, Rossi M, Rosato V, *et al.* Annual or biennial CT screening *versus* observation in heavy smokers: 5-year results of the MILD trial. *Eur J cancer Prev* 2012; 21: 308–315.
- 33 Silva M, Picozzi G, Sverzellati N, et al. Low-dose CT for lung cancer screening: position paper from the Italian college of thoracic radiology. Radiol Med 2022; 127: 543–559.

- 34 ECO. Rastreios vão ser alargados a cancro do pulmão, próstata e estômago, diz ministro. Date last accessed: 22 June 2025. Date last updated: 9 December 2022. https://eco.sapo.pt/2022/12/09/rastreios-vao-ser-alargad os-a-cancro-do-pulmao-prostata-e-estomago-diz-ministro/
- 35 Berge HT, Togka K, Pan X, et al. Cost-effectiveness of lung cancer screening with volume computed tomography in Portugal. *J Comp Eff Res* 2024; 13: e240102.
- 36 International Agency for Research on Cancer. Portugal joins IARC as a new Participating State, strengthening global collaboration in cancer research. Date last accessed: 22 June 2025. Date last updated: 7 May 2025. www.iarc.who.int/wp-content/uploads/2025/05/pr364 E.pdf
- 37 Cancer Australia. National Lung Cancer Screening Program. Date last accessed: 29 June 2025. Date last updated: 2025. www.canceraustralia.gov.au/about-us/lung-cancer-screening
- 38 Lee J, Kim Y, Kim HY, et al. Feasibility of implementing a national lung cancer screening program: interim results from the Korean Lung Cancer Screening Project (K-LUCAS). Transl Lung Cancer Res 2021; 10: 723–736.
- 39 Kang HT. Current status of the national health screening programs in South Korea. Korean J Fam Med 2022; 43: 168–173.
- 40 Health Promotion Administration. The first country to provide lung cancer screening for citizens with a family history of lung cancer or a history of heavy smoking: the Lung Cancer Early Detection Program was launched on July 1, 2022. Date last accessed: 22 June 2025. Date last updated: 13 January 2022. www.hpa. gov.tw/EngPages/Detail.aspx?nodeid=1051&pid=16553
- 41 Wang F, Tan F, Shen S, et al. Risk-stratified approach for never- and ever-smokers in lung cancer screening: a prospective cohort study in China. Am J Respir Crit Care Med 2023; 207: 77–88.
- 42 Li Y, Du Y, Huang Y, *et al.* Community-based lung cancer screening by low-dose computed tomography in China: First round results and a meta-analysis. *Eur J Radiol* 2021; 144: 109988.
- 43 Passiglia F, Cinquini M, Bertolaccini L, et al. Benefits and harms of lung cancer screening by chest computed tomography: a systematic review and meta-analysis. *J Clin Oncol* 2021; 39: 2574–2585.
- 44 Lowry KP, Gazelle GS, Gilmore ME, et al. Personalizing annual lung cancer screening for patients with chronic obstructive pulmonary disease: a decision analysis. Cancer 2015; 121: 1556–1562.
- 45 de Koning HJ, Meza R, Plevritis SK, et al. Benefits and harms of computed tomography lung cancer screening strategies: a comparative modeling study for the US Preventive Services Task Force. Ann Intern Med 2014; 160: 311–320.
- 46 Treskova M, Aumann I, Golpon H, et al. Trade-off between benefits, harms and economic efficiency of low-dose CT lung cancer screening: a microsimulation analysis of nodule management strategies in a population-based setting. BMC Med 2017; 15: 162.
- 47 Criss SD, Sheehan DF, Palazzo L, et al. Population impact of lung cancer screening in the United States: projections from a microsimulation model. PLoS Med 2018; 15: e1002506.
- 48 Pastorino U, Silva M, Sestini S, et al. Prolonged lung cancer screening reduced 10-year mortality in the MILD trial: new confirmation of lung cancer screening efficacy. *Ann Oncol* 2019; 30: 1162–1169.
- 49 Ebell MH, Bentivegna M, Hulme C. Cancer-specific mortality, all-cause mortality, and overdiagnosis in lung cancer screening trials: a meta-analysis. *Ann Fam Med* 2020; 18: 545–552.
- 50 Bonney A, Malouf R, Marchal C, et al. Impact of low-dose computed tomography (LDCT) screening on lung cancer-related mortality. Cochrane Database Syst Rev 2022; 8: CD013829.
- 51 Sanchez-Salcedo P, Berto J, de-Torres JP, et al. Lung cancer screening: fourteen year experience of the Pamplona early detection program (p-IELCAP). Arch Bronconeumol 2015; 51: 169–176.
- 52 Leleu O, Basille D, Auquier M, et al. Results of second round lung cancer screening by low-dose CT scan French cohort study (DEP-KP80). Clin Lung Cancer 2022; 23: e54–e59.
- 53 Pahwa M, Cernat A, Abelson J, et al. Public perspectives on the benefits and harms of lung cancer screening: a systematic review and mixed-method integrative synthesis. J Health Serv Res Policy 2025; 30: 198–207.
- 54 Field JK, Duffy SW, Baldwin DR, et al. The UK Lung Cancer Screening Trial: a pilot randomised controlled trial of low-dose computed tomography screening for the early detection of lung cancer. Health Technol Assess 2016; 20: 1–146.
- McMahon PM, Meza R, Plevritis SK, et al. Comparing benefits from many possible computed tomography lung cancer screening programs: extrapolating from the National Lung Screening Trial using comparative modeling. PLoS One 2014; 9: e99978.
- Meza R, Jeon J, Toumazis I, et al. Evaluation of the benefits and harms of lung cancer screening with low-dose computed tomography: modeling study for the US preventive services task force. JAMA 2021; 325: 988–997.
- 57 Puliti D, Mascalchi M, Carozzi FM, et al. Decreased cardiovascular mortality in the ITALUNG lung cancer screening trial: analysis of underlying factors. Lung Cancer 2019; 138: 72–78.
- 58 Rasmussen T, Køber L, Abdulla J etal. Coronary artery calcification detected in lung cancer screening predicts cardiovascular death. Scand Cardiovasc J 2015; 49: 159–167.

- 59 Mendoza DP, Kako B, Digumarthy SR, *et al.* Impact of significant coronary artery calcification reported on low-dose computed tomography lung cancer screening. *J Thorac Imaging* 2020; 35: 129–135.
- Fan L, Fan K. Lung cancer screening CT-based coronary artery calcification in predicting cardiovascular events: a systematic review and meta-analysis. Medicine (Baltimore) 2018; 97: e10461.
- 61 Almatrafi A, Thomas O, Callister M, et al. The prevalence of comorbidity in the lung cancer screening population: a systematic review and meta-analysis. J Med Screen 2023; 30: 3–13.
- 62 Stemmer A, Shadmi R, Bregman-Amitai O, et al. Using machine learning algorithms to review computed tomography scans and assess risk for cardiovascular disease: retrospective analysis from the National Lung Screening Trial (NLST). PLoS One 2020; 15: e0236021.
- 63 Park ER, Gareen IF, Jain A, *et al.* Examining whether lung screening changes risk perceptions: National Lung Screening Trial participants at 1-year follow-up. *Cancer* 2013; 119: 1306–1313.
- 64 Heffner JL, Coggeshall S, Wheat CL, et al. Receipt of tobacco treatment and one-year smoking cessation rates following lung cancer screening in the Veterans Health Administration. J Gen Intern Med 2022; 37: 1704–1712.
- 65 Tanner NT, Kanodra NM, Gebregziabher M, et al. The association between smoking abstinence and mortality in the national lung screening trial. Am J Respir Crit Care Med 2016; 193: 534–541.
- Parsons A, Daley A, Begh R, et al. Influence of smoking cessation after diagnosis of early stage lung cancer on prognosis: systematic review of observational studies with meta-analysis. BMJ 2010; 340: b5569.
- 67 Evans WK, Gauvreau CL, Flanagan WM, et al. Clinical impact and cost-effectiveness of integrating smoking cessation into lung cancer screening: a microsimulation model. J Thorac Oncol 2019; 14: 1528–1537.
- 68 Meza R, Cao P, Jeon J, et al. Impact of joint lung cancer screening and cessation interventions under the new recommendations of the US Preventive Services Task Force. J Thorac Oncol 2022; 17: 160–166.
- 69 Brain K, Carter B, Lifford KJ, *et al.* Impact of low-dose CT screening on smoking cessation among high-risk participants in the UK Lung Cancer Screening Trial. *Thorax* 2017; 72: 912–918.
- 70 Ashraf H, Saghir Z, Dirksen A, *et al.* Smoking habits in the randomised Danish Lung Cancer Screening Trial with low-dose CT: final results after a 5-year screening programme. *Thorax* 2014; 69: 574–579.
- 71 Park ER, Gareen IF, Japuntich S, et al. Primary care provider-delivered smoking cessation interventions and smoking cessation among participants in the national lung screening trial. JAMA Intern Med 2015; 175: 1509–1516.
- 72 Pozzi P, Munarini E, Bravi F, *et al.* A combined smoking cessation intervention within a lung cancer screening trial: a pilot observational study. *Tumori* 2015; 101: 306–311.
- 73 Ashraf H, Tønnesen P, Holst Pedersen J, et al. Effect of CT screening on smoking habits at 1-year follow-up in the Danish Lung Cancer Screening Trial (DLCST). *Thorax* 2009; 64: 388–392.
- 74 Anderson CM, Yip R, Henschke CI, et al. Smoking cessation and relapse during a lung cancer screening program. Cancer Epidemiol Biomarkers Prev 2009; 18: 3476–3483.
- 75 de Nijs K, Ten Haaf K, van der Aalst C, et al. Projected effectiveness of lung cancer screening and concurrent smoking cessation support in the Netherlands. EClinicalMedicine 2024; 71: 102570.
- 76 Tammemägi MC, Darling GE, Schmidt H, et al. Risk-based lung cancer screening performance in a universal healthcare setting. Nat Med 2024; 30: 1054–1064.
- 77 Sheu CC, Wang CC, Hsu JS, et al. Cost-effectiveness of low-dose computed tomography screenings for lung cancer in high-risk populations: a Markov model. World J Oncol 2024; 15: 550–561.
- 78 Ten Berge H, Willems B, Pan X, et al. Cost-effectiveness analysis of a lung cancer screening program in the Netherlands: a simulation based on NELSON and NLST study outcomes. J Med Econ 2024; 27: 1197–1211.
- 79 Tisi S, Dickson JL, Horst C, et al. Detection of COPD in the SUMMIT study lung cancer screening cohort using symptoms and spirometry. Eur Respir J 2022; 60: 2200795.
- Steiger D, Filopei J, Siddiqi M, et al. Evidence of emphysema in a cohort of participants without symptoms undergoing low dose chest CT screening for lung cancer. Am J Respir Crit Care Med 2017; 195: A5177.
- 81 Erkmen CP, Randhawa S, Patterson F, et al. Quantifying benefits and harms of lung cancer screening in an underserved population: results from a prospective study. Semin Thorac Cardiovasc Surg 2022; 34: 691–700.
- 82 Leleu O, Storme N, Basille D, et al. Lung cancer screening by low-dose CT scan in France: final results of the DEP KP80 study after three rounds. EBioMedicine 2024; 109: 105396.
- 83 Toumazis I, Bastani M, Han SS, *et al.* Risk-based lung cancer screening: A systematic review. *Lung Cancer* 2020: 147: 154–186.
- 84 Saltybaeva N, Martini K, Frauenfelder T, et al. Organ dose and attributable cancer risk in lung cancer screening with low-dose computed tomography. PLoS One 2016; 11: e0155722.
- 85 Mascalchi M, Mazzoni LN, Falchini M, et al. Dose exposure in the ITALUNG trial of lung cancer screening with low-dose CT. Br J Radiol 2012; 85: 1134–1139.
- 86 Rampinelli C, De Marco P, Origgi D, et al. Exposure to low dose computed tomography for lung cancer screening and risk of cancer: secondary analysis of trial data and risk-benefit analysis. BMJ 2017; 356: j347.
- 87 McCunney RJ, Li J. Radiation risks in lung cancer screening programs: a comparison with nuclear industry workers and atomic bomb survivors. *Chest* 2014; 145: 618–624.

- 88 Radiation Emergency Medical Management. International Commission on Radiological Protection (ICRP) guidance for occupational exposure. Date last accessed: 23 June 2025. Date last updated: 30 July 2025. https://remm.hhs.gov/ICRP_guidelines.htm
- 89 Bruder C, Bulliard JL, Germann S, et al. Estimating lifetime and 10-year risk of lung cancer. Prev Med Rep 2018; 11: 125–130.
- 90 Saghir Z, Dirksen A, Ashraf H, et al. CT screening for lung cancer brings forward early disease. The randomised Danish Lung Cancer Screening Trial: status after five annual screening rounds with low-dose CT. Thorax 2012; 67: 296–301.
- 91 Pinsky PF, Bellinger CR, Miller DP Jr. False-positive screens and lung cancer risk in the National Lung Screening Trial: implications for shared decision-making J Med Screen 2018; 25: 110–112.
- 92 Rasmussen JF, Siersma V, Malmqvist J, et al. Psychosocial consequences of false positives in the Danish Lung Cancer CT Screening Trial: a nested matched cohort study. BMJ Open 2020; 10: e034682.
- 93 Karush J, Arndt A, Shah P, *et al.* Improved false-positive rates and the overestimation of unintended harm from lung cancer screening. *Lung* 2019; 197: 327–332.
- 94 Lutzow LK, Magarinos J, Dass C, et al. Lung cancer screening in a safety-net hospital: rare harms inform decision making. Ann Thorac Surg 2022; 114: 1168–1175.
- 95 Sverzellati N, Silva M, Calareso G, et al. Low-dose computed tomography for lung cancer screening: comparison of performance between annual and biennial screen. Eur Radiol 2016; 26: 3821–3829.
- 96 Young S, Lo P, Kim G, et al. The effect of radiation dose reduction on computer-aided detection (CAD) performance in a low-dose lung cancer screening population. Med Phys 2017; 44: 1337–1346.
- 97 Han SS, Ten Haaf K, Hazelton WD, et al. The impact of overdiagnosis on the selection of efficient lung cancer screening strategies. Int J Cancer 2017; 140: 2436–2443.
- 98 Patz EF Jr., Pinsky P, Gatsonis C, et al. Overdiagnosis in low-dose computed tomography screening for lung cancer. *JAMA Intern Med* 2014; 174: 269–274.
- 99 González Maldonado S, Motsch E, Trotter A, et al. Overdiagnosis in lung cancer screening: estimates from the German Lung Cancer Screening Intervention Trial. Int J Cancer 2021; 148: 1097–1105.
- Mortani Barbosa EJ Jr. Lung cancer screening overdiagnosis: reports of overdiagnosis in screening for lung cancer are grossly exaggerated. Acad Radiol 2015; 22: 976–982.
- 101 Aberle DR, Black WC, Chiles C, et al. Lung cancer incidence and mortality with extended follow-up in the National Lung Screening Trial. *J Thorac Oncol* 2019; 14: 1732–1742.
- 102 Hsin-Hung C, En-Kuei T, Yun-Ju W, et al. Impact of annual trend volume of low-dose computed tomography for lung cancer screening on overdiagnosis, overmanagement, and gender disparities. Cancer Imaging 2024; 24: 73.
- 103 Kim SY, Silvestri GA, Kim YW, et al. Screening for lung cancer, overdiagnosis, and healthcare utilization: a nationwide population-based study. J Thorac Oncol 2025; 20: 577–588.
- 104 Hoffman RM, Atallah RP, Struble RD, et al. Lung cancer screening with low-dose CT: a meta-analysis. Gen Intern Med 2020; 35: 3015–3025.
- Gareen IF, Duan F, Greco EM, et al. Impact of lung cancer screening results on participant health-related quality of life and state anxiety in the National Lung Screening Trial. Cancer 2014; 120: 3401–3409.
- 106 Taghizadeh N, Tremblay A, Cressman S, et al. Health-related quality of life and anxiety in the PAN-CAN lung cancer screening cohort. BMJ Open 2019; 9: e024719
- 107 Brain K, Lifford KJ, Carter B, et al. Long-term psychosocial outcomes of low-dose CT screening: Results of the UK lung cancer screening randomised controlled trial. Thorax 2016; 71: 996–1005.
- 108 Kummer S, Waller J, Ruparel M, et al. Psychological outcomes of low-dose CT lung cancer screening in a multisite demonstration screening pilot: the Lung Screen Uptake Trial (LSUT). Thorax 2020; 75: 1065–1073.
- McFadden K, Nickel B, Rankin NM, et al. Participant factors associated with psychosocial impacts of lung cancer screening: a systematic review. Cancer Med 2024; 13: e70054.
- 110 van den Bergh KA, Essink-Bot ML, Borsboom GJ, et al. Long-term effects of lung cancer computed tomography screening on health-related quality of life: the NELSON trial. Eur Respir J 2011; 38: 154–161.
- 111 Taylor KL, Shelby R, Gelmann E, et al. Quality of life and trial adherence among participants in the prostate, lung, colorectal, and ovarian cancer screening trial. J Natl Cancer Inst 2004; 96: 1083–1094.
- 112 Wu GX, Raz DJ, Brown L, et al. Psychological burden associated with lung cancer screening: a systematic review. Clin Lung Cancer 2016; 17: 315–324.
- 113 Moyer VA, US Preventive Services Task Force. Screening for lung cancer: US Preventive Services Task Force recommendation statement. *Ann Intern Med* 2014; 160: 330–338.
- 114 Martínez Pérez E, Quevedo K, Arrarás Martínez M, *et al.* Lung cancer screening: use of low-dose computed tomography. *Arch Bronconeumol (Engl Ed)* 2019; 55: 526–531.
- Darling G, Tammemagi MC, Schmidt H, et al. Organized lung cancer screening pilot: informing a province-wide program in Ontario, Canada. Ann Thorac Surg 2021; 111: 1805–1811.
- Ahmed A, Verma N, Barreto I, et al. Low-dose lung cancer screening at an academic medical center: initial experience and dose reduction strategies. Acad Radiol 2018; 25: 1025–1030.

- 117 Inoue A, Johnson TF, Walkoff LA, et al. Lung cancer screening using clinical photon-counting detector computed tomography and energy-integrating-detector computed tomography: a prospective patient study. J Comput Assist Tomogr 2023; 47: 229–235.
- Milanese G, Ledda RE, Sabia F, et al. Ultra-low dose computed tomography protocols using spectral shaping for lung cancer screening: Comparison with low-dose for volumetric LungRADS classification. Eur J Radiol 2023; 161: 110760.
- 119 Fujita M, Higaki T, Awaya Y, et al. Lung cancer screening with ultra-low dose CT using full iterative reconstruction. Jpn J Radiol 2017; 35: 179–189.
- 120 Meier-Schroers M, Homsi R, Skowasch D, et al. Lung cancer screening with MRI: results of the first screening round. J Cancer Res Clin Oncol 2018; 144: 117–125.
- Meier-Schroers M, Homsi R, Gieseke J, et al. Lung cancer screening with MRI: evaluation of MRI for lung cancer screening by comparison of LDCT- and MRI-derived Lung-RADS categories in the first two screening rounds. Eur Radiol 2019; 29: 898–905.
- 122 Carreras G, Gorini G, Paci E. Can a national lung cancer screening program in combination with smoking cessation policies cause an early decrease in tobacco deaths in Italy? Cancer Prev Res (Phila) 2012; 5: 874–882.
- 123 Piñeiro B, Simmons VN, Palmer AM, et al. Smoking cessation interventions within the context of low-dose computed tomography lung cancer screening: a systematic review. Lung Cancer 2016; 98: 91–98.
- 124 Cadham CJ, Jayasekera JC, Advani SM, et al. Smoking cessation interventions for potential use in the lung cancer screening setting: a systematic review and meta-analysis. Lung Cancer 2019; 135: 205–216.
- 125 Cao P, Jeon J, Levy DT, et al. Potential impact of cessation interventions at the point of lung cancer screening on lung cancer and overall mortality in the United States. J Thorac Oncol 2020; 15: 1160–1169.
- 126 Filippo L, Principe R, Cesario A, et al. Smoking cessation intervention within the framework of a lung cancer screening program: preliminary results and clinical perspectives from the "Cosmos-II" trial. Lung 2015; 193: 147–149.
- 127 Pistelli F, Aquilini F, Falaschi F, et al. Smoking cessation in the ITALUNG lung cancer screening: what does "teachable moment" mean? *Nicotine Tob Res* 2020; 22: 1484–1491.
- 128 Tremblay A, Taghizadeh N, Huang J, et al. A randomized controlled study of integrated smoking cessation in a lung cancer screening program. J Thorac Oncol 2019; 14: 1528–1537.
- 129 Lopez-Olivo MA, Minnix JA, Fox JG, et al. Smoking cessation and shared decision-making practices about lung cancer screening among primary care providers. Cancer Med 2021; 10: 1357–1365.
- 130 van der Aalst CM, de Koning HJ, van den Bergh KA, et al. The effectiveness of a computer-tailored smoking cessation intervention for participants in lung cancer screening: a randomised controlled trial. Lung Cancer 2012: 76: 204–210.
- 131 Shen J, Crothers K, Kross EK, *et al.* Provision of smoking cessation resources in the context of in-person shared decision-making for lung cancer screening. *Chest* 2021; 160: 765–775.
- 132 Ostroff JS, Copeland A, Borderud SP, et al. Readiness of lung cancer screening sites to deliver smoking cessation treatment: current practices, organizational priority, and perceived barriers. Nicotine Tob Res 2016; 18: 1067–1075.
- 133 laccarino JM, Duran C, Slatore CG, et al. Combining smoking cessation interventions with LDCT lung cancer screening: a systematic review. Prev Med 2019; 121: 24–32.
- Shusted CS, Mukhtar S, Lee J, et al. Factors associated with receipt of tobacco treatment integrated with nurse navigation in a centralized lung cancer screening program at an urban academic medical center. Cancer Control 2024; 31: 10732748241304966.
- 135 Taylor KL, Hagerman CJ, Luta G, et al. Preliminary evaluation of a telephone-based smoking cessation intervention in the lung cancer screening setting: a randomized clinical trial. Lung Cancer 2017; 108: 242–246.
- 136 Cinciripini PM, Minnix JA, Kypriotakis G, et al. Smoking cessation interventions in the lung cancer screening setting: a randomized clinical trial. *JAMA Intern Med* 2025; 185: 284–291.
- 137 Joseph AM, Rothman AJ, Almirall D, et al. Lung cancer screening and smoking cessation clinical trials. SCALE (Smoking Cessation within the Context of Lung Cancer Screening) Collaboration. Am J Respir Crit Care Med 2018; 197: 172–182.
- European Commission. 4-IN THE LUNG RUN: towards INdividually tailored INvitations, screening INtervals, and INtegrated co-morbidity reducing strategies in lung cancer screening Date last accessed: 19 July 2025. Date last updated: 2 April 2020. https://cordis.europa.eu/project/id/848294
- Murray RL, Brain K, Britton J, et al. Yorkshire Enhanced Stop Smoking (YESS) study: a protocol for a randomised controlled trial to evaluate the effect of adding a personalised smoking cessation intervention to a lung cancer screening programme. BMJ Open 2020; 10: e037086.
- 140 Balata H, Harvey J, Barber PV, et al. Spirometry performed as part of the Manchester community-based lung cancer screening programme detects a high prevalence of airflow obstruction in individuals without a prior diagnosis of COPD. *Thorax* 2020; 75: 655–660.

- 141 Marshall HM, Courtney DA, Passmore LH, et al. Brief tailored smoking cessation counseling in a lung cancer screening population is feasible: a pilot randomized controlled trial. Nicotine Tob Res 2016; 18: 1665–1669.
- 142 Sands J, Tammemägi MC, Couraud S, *et al.* Lung screening benefits and challenges: a review of the data and outline for implementation. *J Thorac Oncol* 2021; 16: 37–53.
- 143 Waddle MR, Ko SJ, May J, *et al.* Improving identification of candidates for lung cancer screening in a high risk population. *Lung Cancer* 2020; 148: 79–85.
- 144 Triplette M, Donovan LM, Crothers K, et al. Prediction of lung cancer screening eligibility using simplified criteria. Ann Am Thorac Soc 2019; 16: 1280–1285.
- 145 Li K, Hüsing A, Sookthai D, et al. Selecting high-risk individuals for lung cancer screening: a prospective evaluation of existing risk models and eligibility criteria in the German EPIC cohort. Cancer Prev Res (Phila) 2015; 8: 777–785.
- 146 Kaaks R, Delorme S. Lung cancer screening by low-dose computed tomography part 1: expected benefits, possible harms, and criteria for eligibility and population targeting. RoFo 2021; 193: 527–536.
- 147 Expert Panel on Thoracic Imaging, Donnelly EF, Kazerooni EA, et al. ACR Appropriateness Criteria® lung cancer screening. J Am Coll Radiol 2018; 15: S341–S346.
- 148 Potter AL, Bajaj SS, Yang CJ. The 2021 USPSTF lung cancer screening guidelines: a new frontier. *Lancet Respir Med* 2021; 9: 689–691.
- 149 Triphuridet N, Nagasaka M, Shum E, et al. Race, age at diagnosis and histological characteristics of lung cancer in never-smokers (LCINS) and ever-smokers in low-dose computed tomography (LDCT) screening: a systematic review and meta-analysis. Transl Lung Cancer Res 2024; 13: 1047–1060.
- 150 Li N, Tan F, Chen W, et al. One-off low-dose CT for lung cancer screening in China: a multicentre, population-based, prospective cohort study. Lancet Respir Med 2022; 10: 378–391.
- Manners D, Hui J, Hunter M, et al. Estimating eligibility for lung cancer screening in an Australian cohort, including the effect of spirometry. Med J Aust 2016; 204: 406.
- Modin HE, Fathi JT, Gilbert CR, et al. Pack-year cigarette smoking history for determination of lung cancer screening eligibility. Comparison of the electronic medical record versus a shared decision-making conversation. Ann Am Thorac Soc 2017; 14: 1320–1325.
- 153 Miranda-Filho A, Charvat H, Bray F, et al. A modeling analysis to compare eligibility strategies for lung cancer screening in Brazil. EClinicalMedicine 2021; 42: 101176.
- Sheehan DF, Criss SD, Gazelle GS, et al. Evaluating lung cancer screening in China: implications for eligibility criteria design from a microsimulation modeling approach. PLoS One 2017; 12: e0173119.
- Landy R, Cheung LC, Berg CD, et al. Contemporary implications of US Preventive Services Task Force and risk-based guidelines for lung cancer screening eligibility in the United States. Ann Intern Med 2019; 171: 384–386.
- Brenner H, Krilaviciute A. Commonly applied selection criteria for lung cancer screening may have strongly varying diagnostic performance in different countries. *Cancers (Basel)* 2020; 12: 3012.
- 157 Reese TJ, Schlechter CR, Potter LN, et al. Evaluation of revised US Preventive Services Task Force lung cancer screening guideline among women and racial/ethnic minority populations. JAMA Netw Open 2021; 4: e2033769.
- 158 Wolf AMD, Oeffinger KC, Shih TY, et al. Screening for lung cancer: 2023 guideline update from the American Cancer Society. CA Cancer J Clin 2024; 74: 50–81.
- 159 Kerpel-Fronius A, Tammemägi M, Cavic M, et al. Screening for lung cancer in individuals who never smoked: an International Association for the Study of Lung Cancer early detection and screening committee report. J Thorac Oncol 2022; 17: 56–66.
- 160 Vehmas T, Pallasaho P, Piirilä P. Lung function predicts mortality: 10-year follow-up after lung cancer screening among asbestos-exposed workers. Int Arch Occup Environ Health 2013; 86: 667–672.
- 161 Markowitz SB. Lung cancer screening in asbestos-exposed populations. Int J Environ Res Public Health 2022; 19: 2688.
- 162 Field JK, Vulkan D, Davies MPA, et al. Liverpool Lung Project lung cancer risk stratification model: calibration and prospective validation. *Thorax* 2021; 76: 161–168.
- 163 Brims FJH, Harris EJA, Murray C, et al. Lung cancer screening an asbestos exposed population: existing lung cancer risk criteria are not sufficient. Respirology 2023; 28: 543–550.
- 164 Kakinuma R, Muramatsu Y, Asamura H, et al. Low-dose CT lung cancer screening in never-smokers and smokers: results of an eight-year observational study. Transl Lung Cancer Res 2020; 9: 10–22.
- Loewen G, Black B, McNew T, et al. Lung cancer screening in patients with Libby amphibole disease: high yield despite predominantly environmental and household exposure. Am J Ind Med 2019; 62: 1112–1116.
- Tammemägi MC, Katki HA, Hocking WG, et al. Selection criteria for lung-cancer screening. N Engl J Med 2013; 368: 728–736.
- 167 Fu M, Travier N, Martín-Sánchez JC, et al. Identifying high-risk individuals for lung cancer screening: going beyond NLST criteria. PLoS One 2018; 13: e0195441.

- 168 Pasquinelli MM, Tammemägi MC, Kovitz KL, et al. Addressing sex disparities in lung cancer screening eligibility: USPSTF vs PLCOm2012 criteria. Chest 2022; 161: 248–256.
- 169 Guo LW, Chen Q, Shen YC, et al. Evaluation of a low-dose computed tomography lung cancer screening program in Henan, China. JAMA Netw Open 2020; 3: e2019039.
- 170 Chen CY, Chen CH, Shen TC, et al. Lung cancer screening with low dose computed tomography: experiences from a tertiary hospital in Taiwan. J Formos Med Assoc 2016; 115: 163–170.
- 171 Park B, Kim Y, Lee J, et al. Risk-based prediction model for selecting eligible population for lung cancer screening among ever smokers in Korea. *Transl Lung Cancer Res* 2021; 10: 4390–4402.
- 172 Gu F, Cheung LC, Freedman ND, et al. Potential impact of including time to first cigarette in risk models for selecting ever-smokers for lung cancer screening. J Thorac Oncol 2017; 12: 1646–1653.
- 173 Feng X, Goodley P, Alcala K, et al. Evaluation of risk prediction models to select lung cancer screening participants in Europe: a prospective cohort consortium analysis. Lancet Digit Health 2024; 6: e614–e624.
- 174 Gohagan JK, Prorok PC, Greenwald P, et al. The PLCO cancer screening trial: background, goals, organization, operations, results. Rev Recent Clin Trials 2015; 10: 173–180.
- 175 Toelle BG, Xuan W, Bird TE, et al. Respiratory symptoms and illness in older Australians: the Burden of Obstructive Lung Disease (BOLD) study. Med J Aust 2013; 198: 144–148.
- 176 Tammemägi MC, Lam SC, McWilliams AM, et al. Incremental value of pulmonary function and sputum DNA image cytometry in lung cancer risk prediction. Cancer Prev Res (Phila) 2011; 4: 552–561.
- 177 Young RP, Duan F, Chiles C, et al. Airflow limitation and histology shift in the National Lung Screening Trial. The NLST-ACRIN Cohort Substudy. Am J Respir Crit Care Med 2015; 192: 1060–1067.
- 178 Tammemägi MC, Church TR, Hocking WG, et al. Evaluation of the lung cancer risks at which to screen everand never-smokers: screening rules applied to the PLCO and NLST cohorts. PLoS Med 2014; 11: e1001764.
- 179 Bach PB, Kattan MW, Thornquist MD, et al. Variations in lung cancer risk among smokers. *J Natl Cancer Inst* 2003; 95: 470–478.
- 180 Spitz MR, Hong WK, Amos CI, et al. A risk model for prediction of lung cancer. J Natl Cancer Inst 2007; 9: 715–726.
- 181 Cassidy A, Myles J, van Tongeren M, et al. The LLP risk model: an individual risk prediction model for lung cancer. Br J Cancer 2008; 98: 270–276.
- **182** Kats DJ, Adie Y, Tlimat A, *et al.* Assessing different approaches to leveraging historical smoking exposure data to better select lung cancer screening candidates: a retrospective validation study. *Nicotine Tob Res* 2021; 23: 1334–1340.
- 183 Vergouwe Y, Steyerberg EW, Eijkemans MJC, et al. Substantial effective sample sizes were required for external validation studies of predictive logistic regression models. J Clin Epidemiol 2005; 58: 475–483.
- 184 Collins GS, Ogundimu EO, Altman DG. Sample size considerations for the external validation of a multivariable prognostic model: a resampling study. Stat Med 2016; 35: 214–226.
- 185 D'Amelio AM Jr, Cassidy A, Asomaning K, et al. Comparison of discriminatory power and accuracy of three lung cancer risk models. Br J Cancer 2010; 103: 423–429.
- 186 Tammemägi M, Hader J, Yu M, et al. Organized high risk lung cancer screening in Ontario, Canada: a multi-centre prospective evaluation. J Thorac Oncol 2017; 12: S579.
- 187 Kovalchik SA, Tammemagi M, Berg CD, et al. Targeting of low-dose CT screening according to the risk of lung-cancer death. N Engl J Med 2013; 369: 245–254.
- 188 Smith RJ, Vijayaharan T, Linehan V, et al. Efficacy of risk prediction models and thresholds to select patients for lung cancer screening. Can Assoc Radiol J 2022; 73: 672–679.
- 189 Aberle DR, Berg CD, Black WC, *et al.* The National Lung Screening Trial: overview and study design. *Radiology* 2011; 258: 243–253.
- 190 Hoggart C, Brennan P, Tjonneland A, et al. A risk model for lung cancer incidence. Cancer Prev Res (Phila) 2012; 5: 834–846.
- **191** Katki HA, Kovalchik SA, Berg CD, *et al.* Development and validation of risk models to select ever-smokers for CT lung cancer screening. *JAMA* 2016; 315: 2300–2311.
- 192 Tammemägi MC, Ruparel M, Tremblay A, et al. USPSTF2013 versus PLCOm2012 lung cancer screening eligibility criteria (International Lung Screening Trial): interim analysis of a prospective cohort study. Lancet Oncol 2022; 23: 138–148.
- 193 Katki HA, Kovalchik SA, Petito LC, et al. Implications of nine risk prediction models for selecting ever-smokers for computed tomography lung cancer screening. Ann Intern Med 2018; 169: 10–19.
- 194 Ten Haaf K, Jeon J, Tammemägi MC, et al. Risk prediction models for selection of lung cancer screening candidates: a retrospective validation study. PLoS Med 2017; 14: e1002277.
- 195 Husing A, Kaaks R. Risk prediction models versus simplified selection criteria to determine eligibility for lung cancer screening: an analysis of German federal-wide survey and incidence data. Eur J Epidemiol 2020; 35: 899–912.
- 196 Weber M, Yap S, Goldsbury D, et al. Identifying high risk individuals for targeted lung cancer screening: independent validation of the PLCOm2012 risk prediction tool. Int J Cancer 2017; 141: 242–253.

- 197 Crosbie PA, Balata H, Evison M, et al. Second round results from the Manchester 'Lung Health Check' community-based targeted lung cancer screening pilot. Thorax 2019; 74: 700–704.
- 198 Teles G, Macedo A, Chate R, et al. LDCT lung cancer screening in populations at different risk for lung cancer. BMJ 2020; 7: e000455.
- 199 Boutsikou E, Hardavella G, Fili E, et al. The role of biomarkers in lung cancer screening. Cancers (Basel) 2024; 16: 1980.
- 200 Seijo LM, Peled N, Ajona D, et al. Biomarkers in lung cancer screening: achievements, promises and challenges. J Thorac Oncol 2019; 14: 343–357.
- 201 Chu GCW, Lazare K, Sullivan F. Serum and blood based biomarkers for lung cancer screening: a systematic review. BMC Cancer 2018; 18: 181.
- 202 Borg M, Wen SWC, Nederby L, et al. Performance of the EarlyCDT® Lung test in detection of lung cancer and pulmonary metastases in a high-risk cohort. Lung Cancer 2021; 158: 85–90.
- 203 La S, Boyle P, Healey GF, et al. EarlyCDT-lung: an immunobiomarker test as an aid to early detection of lung cancer. Cancer Prev Res (Phila) 2011; 4: 1126–1134.
- 204 Sullivan FM, Mair FS, Anderson W, et al. Earlier diagnosis of lung cancer in a randomised trial of an autoantibody blood test followed by imaging. Eur Respir J 2021; 57: 2000670.
- 205 Vachani A, Pass HI, Rom WN, et al. Validation of a multiprotein plasma classifier to identify benign lung nodules. J Thorac Oncol 2015; 10: 629–637.
- 206 Sozzi G, Boeri M, Rossi M, et al. Clinical utility of a plasma-based miRNA signature classifier within computed tomography lung cancer screening: a correlative MILD trial study. J Clin Oncol 2014; 32: 768–773.
- 207 Yang JS, Li BJ, Lu HW, et al. Serum miR-152, miR-148a, miR-148b, and miR-21 as novel biomarkers in non-small cell lung cancer screening. *Tumour Biol* 2015; 36: 3035–3042.
- 208 Roś-Mazurczyk M, Wojakowska A, Marczak Ł, *et al.* Panel of serum metabolites discriminates cancer patients and healthy participants of lung cancer screening a pilot study. *Acta Biochim Pol* 2017; 64: 513–518.
- 209 Huang L, Zhou JG, Yao WX, et al. Systematic review and meta-analysis of the efficacy of serum neuron-specific enolase for early small cell lung cancer screening. *Oncotarget* 2017; 8: 64358–64372.
- 210 Yang Q, Zhang P, Wu R, et al. Identifying the best marker combination in CEA, CA125, CY211, NSE, and SCC for lung cancer screening by combining ROC curve and logistic regression analyses: is it feasible? Dis Markers 2018; 2018: 2082840.
- 211 Kok VC, Yu CC. Cancer-derived exosomes: their role in cancer biology and biomarker development. Int J Nanomed 2020; 15: 8019–8036.
- 212 Smolarz M, Kurczyk A, Jelonek K, et al. The lipid composition of serum-derived small extracellular vesicles in participants of a lung cancer screening study. Cancers (Basel) 2021; 13: 3414.
- 213 Fan X, Zhong R, Liang H, et al. Exhaled VOC detection in lung cancer screening: a comprehensive meta-analysis. *BMC Cancer* 2024; 24: 775.
- 214 Peralbo-Molina A, Calderón-Santiago M, Priego-Capote F, et al. Metabolomics analysis of exhaled breath condensate for discrimination between lung cancer patients and risk factor individuals. J Breath Res 2016; 10: 016011
- 215 Nunez-Naveira L, Marinas-Pardo LA, Montero-Martinez C. Mass spectrometry analysis of the exhaled breath condensate and proposal of dermcidin and S100A9 as possible markers for lung cancer prognosis. *Lung* 2019; 197: 523–531.
- 216 Li W, Liu H, Xie D, et al. Lung cancer screening based on type-different sensor arrays. Sci Rep 2017; 7: 1969.
- 217 Lam VK, Scott RJ, Billings P, et al. Utility of incorporating a gene-based lung cancer risk test on uptake and adherence in a community-based lung cancer screening pilot study. Prev Med Rep 2021; 23: 101397.
- 218 Ostrin AEJ, Sidransky D, Spira A, et al. Biomarkers for lung cancer screening and detection. Cancer Epidemiol Biomarkers Prev 2020; 29: 2411–2415.
- 219 Pastorino U, Sverzellati N, Sestini S, et al. Ten-year results of the Multicentric Italian Lung Detection trial demonstrate the safety and efficacy of biennial lung cancer screening. Eur J Cancer 2019; 118: 142–148.
- 220 Yousaf-Khan U, van der Aalst C, de Jong PA, et al. Final screening round of the NELSON lung cancer screening trial: the effect of a 2.5-year screening interval. Thorax 2017; 72: 48–56.
- 221 Handy JR, Skokan M, Rauch E, et al. Results of lung cancer screening in the community. Ann Fam Med 2020; 18: 243–249.
- 222 Silva M, Milanese G, Sestini S, et al. Lung cancer screening by nodule volume in Lung-RADS v1.1: negative baseline CT yields potential for increased screening interval. Eur Radiol 2021; 31: 1956–1968.
- 223 Robbins HA, Berg CD, Cheung LC, et al. Identification of candidates for longer lung cancer screening intervals following a negative low-dose computed tomography result. J Natl Cancer Inst 2019; 111: 996–999.
- González Maldonado S, Hynes LC, Motsch E, et al. Validation of multivariable lung cancer risk prediction models for the personalized assignment of optimal screening frequency: a retrospective analysis of data from the German Lung Cancer Screening Intervention Trial (LUSI). Transl Lung Cancer Res 2021; 10: 1305–1317.

- 225 Zhang L, Yip R, Jirapatnakul A, et al. Lung cancer screening intervals based on cancer risk. Lung Cancer 2020; 149: 113–119.
- 226 Goffin JR, Flanagan WM, Miller AB, et al. Biennial lung cancer screening in Canada with smoking cessation-outcomes and cost-effectiveness. Lung Cancer 2016; 101: 98–103.
- 227 Pastorino U, Boeri M, Sestini S, et al. Baseline computed tomography screening and blood microRNA predict lung cancer risk and define adequate intervals in the BioMILD trial. Ann Oncol 2022; 33: 395–405.
- 228 Hemmati M, Ishizawa S, Meza R, et al. Benchmarking lung cancer screening programmes with adaptive screening frequency against the optimal screening schedules derived from the ENGAGE framework: a comparative microsimulation study. EclinicalMedicine 2024; 74: 102743.
- Rotta M, Pizzato M, La Vecchia C, *et al.* Efficacy of lung cancer screening appears to increase with prolonged intervention: results from the MILD trial and a meta-analysis. *Ann Oncol* 2019; 30: 1040–1043.
- 230 Robinson EM, Liu BY, Sigel K, et al. Impact of comorbidities on lung cancer screening evaluation. Clin Lung Cancer 2022; 23: 402–409.
- 231 Kale MS, Sigel K, Arora A, et al. The benefits and harms of lung cancer screening in individuals with comorbidities. *JTO Clin Res Rep* 2024; 5: 100635.
- 232 Wu CW. The BUILT study: a single-center 5-year experience of lung cancer screening in Taiwan. *Int J Med Sci* 2021: 18: 3861–3869.
- 233 Jonas DE, Reuland DS, Reddy SM, et al. Screening for lung cancer with low-dose computed tomography: updated evidence report and systematic review for the US Preventive Services Task Force. JAMA 2021; 325: 971–987.
- 234 American College of Radiology. ACR STR practice guideline for the performance and reporting of lung cancer screening thoracic computed tomography. Date last accessed: 23 June 2025. https://gravitas.acr.org/PPTS/DownloadPreviewDocument?ReleaseId=2&DocId=38
- 235 American College of Radiology. Adult lung cancer screening technical specifications 2014. Date last accessed: 23 June 2025. www.acraccreditation.org/-/media/ACRAccreditation/Documents/LCS/Lung-Cancer Screening-Technical-Specifications.pdf?la=en 33
- 236 European Society of Thoracic Imaging. Chest CT for lung cancer screening. Date last accessed: 23 June 2025. Date last updated: 14 June 2019. www.myesti.org/content-esti/uploads/ESTI-LCS-technical-standards_ 2019-06-14.pdf
- 237 American Association of Physicists in Medicine. Lung cancer screening CT protocols version 6.0. Date last accessed: 23 June 2025. Date last updated: 9 November 2023. www.aapm.org/pubs/CTProtocols/documents/LungCancerScreeningCT.pdf
- 238 Vonder M, Dorrius MD, Vliegenthart R. Latest CT technologies in lung cancer screening: protocols and radiation dose reduction. *Transl Lung Cancer Res* 2021; 10: 1154–1164.
- 239 Daldwin D, O'Dowd E, Tietzova I, et al. Developing a pan-European technical standard for a comprehensive high-quality lung cancer CT screening program. An ERS Technical Standard. Eur Respir J 2023; 61: 2300128.
- 240 Pedersen JH, Ashraf H, Dirksen A, et al. The Danish randomized lung cancer CT screening trial-overall design and results of the prevalence round. J Thorac Oncol 2009; 4: 608–614.
- 241 Oudkerk M, Devaraj A, Vliegenthart R, et al. European position statement on lung cancer screening. Lancet Oncol 2017: 18: e754–e766.
- 242 American College of Radiology. Lung CT screening reporting and data system (Lung-RADS). Date last accessed: 23 June 2025. www.acr.org/Clinical-Resources/Clinical-Tools-and-Reference/Reporting-and-Data-Systems/Lung-RADS
- 243 European Society of Thoracic Imaging. ESTI lung cancer screening certification project. Date last accessed: 23 June 2025. www.myesti.org/lungcancerscreeningcertificationproject
- 244 Kauczor HU, Baird AM, Blum TG, et al. ESR/ERS statement paper on lung cancer screening. Eur Radiol 2020; 30: 3277–3294.
- 245 Morgan L, Choi H, Reid M, et al. Frequency of incidental findings and subsequent evaluation in low-dose computed tomographic scans for lung cancer screening. Ann Am Thorac Soc 2017; 14: 1450–1456.
- 246 Kucharczyk MJ, Menezes RJ, McGregor A, et al. Assessing the impact of incidental findings in a lung cancer screening study by using low-dose computed tomography. Can Assoc Radiol J 2011; 62: 141–145.
- 247 van de Wiel JC, Wang Y, Xu DM, et al. Neglectable benefit of searching for incidental findings in the Dutch-Belgian lung cancer screening trial (NELSON) using low-dose multidetector CT. Eur Radiol 2007; 17: 1474–1482.
- 248 Priola AM, Priola SM, Giaj-Levra M, et al. Clinical implications and added costs of incidental findings in an early detection study of lung cancer by using low-dose spiral computed tomography. Clin Lung Cancer 2013; 14: 139–148.
- 249 Reiter MJ, Nemesure A, Madu E, et al. Frequency and distribution of incidental findings deemed appropriate for S modifier designation on low-dose CT in a lung cancer screening program. Lung Cancer 2018; 120: 1–6.
- Kinsinger LS, Anderson C, Kim J, et al. Implementation of lung cancer screening in the Veterans Health Administration. *JAMA Intern Med* 2017; 177: 399–406.

- 251 Dyer DS, White C, Conley Thomson C, et al. A quick reference guide for incidental findings on lung cancer screening CT examinations. J Am Coll Radiol 2023; 20: 162–172.
- 252 O'Dowd EL, Tietzova I, Bartlett E, et al. ERS/ESTS/ESTRO/ESR/ESTI/EFOMP statement on management of incidental findings from low dose CT screening for lung cancer. Eur Respir J 2023; 62: 2300533.
- 253 Creamer AW, Horst C, Dickson JL, et al. Growing small solid nodules in lung cancer screening: safety and efficacy of a 200 mm3 minimum size threshold for multidisciplinary team referral. Thorax 2023; 78: 202–206.
- 254 Balata H, Punjabi A, Chaudhuri N, et al. The detection, assessment and clinical evolution of interstitial lung abnormalities identified through lung cancer screening. ERJ Open Res 2023; 9: 00632-2022.
- 255 Klein-Awerjanow K, Rzyman W, Dziedzic R, et al. Assessment of calcium score cutoff point for clinically significant aortic stenosis on lung cancer screening program low-dose computed tomography-a cross-sectional analysis. Diagnostics (Basel) 2023; 13: 246.
- 256 Harrison H, Wood A, Pennells L, et al. Estimating the effectiveness of kidney cancer screening within lung cancer screening programmes: a validation in UK Biobank. Eur Urol Oncol 2023; 6: 351–353.
- 257 Patel AS, Miller E, Regis SM, et al. Interstitial lung abnormalities in a large clinical lung cancer screening cohort: association with mortality and ILD diagnosis. Respir Res 2023; 24: 49.
- 258 Quantitative Imaging Biomarkers Alliance. Lung Nodule Assessment in CT Screening Profile 2017. Date last accessed: 19 July 2025. https://qibawiki.rsna.org/images/9/9c/QIBA_CT_Vol_LungNoduleAssessmentInCTScreening 2017.10.31.pdf
- 259 Rydzak CE, Armato SG, Avila RS, et al. Quality assurance and quantitative imaging biomarkers in low dose CT lung cancer screening. Br J Radiol 2018; 91: 20170401.
- 260 Kazerooni E, Armstrong M, Amorosa J, et al. ACR CT accreditation program and the lung cancer screening program designation. J Am Coll Radiol 2016; 13: R30–R34.
- 261 Tremblay A, Ezer N, Burrowes P, et al. Development and application of an electronic synoptic report for reporting and management of low-dose computed tomography lung cancer screening examination. BMC Med Imaging 2022; 22: 111.